Skip to main content
Log in

ReSSIM: a mixed-level simulator for dynamic coarse-grained reconfigurable processor

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a mixed-level simulator for dynamic coarse-grained reconfigurable processor (CGRP), called ReSSIM (reconfigurable system simulation implementation mechanism), and the corresponding simulation tool-chain, including task compiler, profiler and debugger. A generic modeling methodology supporting convenient extension of on-chip modules is also proposed. In order to explore the details of the interested modules while maintaining reasonable simulation speed, RCA (reconfigurable computing array), the key reconfigurable device in ReSSIM, is modeled on cycle-accurate level, while the other modules are modeled on transaction level. The typical parameters of RCA are scalable and adjustable, which helps the architects to explore the massive details of the reconfigurable device. Experiment shows that simulation speedup achieved ranges from 9.26× to 18.39× compared with VCS (Synopsys verilog compiler simulator) when running three computingintensive kernel tasks of H.264 decoding algorithm—IDCT (inverse discrete cosine transform), deblocking and MC-chroma (motion compensation). Simulation speed for a set of real applications, such as MPEG4, G.729 and EFR, is 35× slower than the corresponding native executions (i.e. measured from the real chip). And the relative simulation errors are 11% less than the measured IPC (instructions per cycle) of the real chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Todman T J, Constantinides G A, Wilton S J E, et al. Reconfigurable computing: architectures and design methods. IEE Proc-Comput Digit Tech, 2005, 152: 193–207

    Article  Google Scholar 

  2. Singh H, Lee M-H, Lu G, et al. MorphoSys: an integrated reconfigurable system for data-parallel and computationintensive applications. IEEE Trans Comput, 2000, 49: 465–481

    Article  Google Scholar 

  3. Mei B, Vernalde S, Verkest D, et al. ADRES: An architecture with tightly coupled VLIW processor and coarse-grained reconfigurable matrix. In: Brebner G, Woods R, eds. Field-Programmable Logic and Applications, Lecture Notes in Computer Science, Vol. 2778. Berlin: Springer, 2003. 61–70

    Chapter  Google Scholar 

  4. Baumgarte V, Ehlers G, May F, et al. PACT XPP-a self-reconfigurable data processing architecture. J Supercomput, 2003, 26: 167–184

    Article  MATH  Google Scholar 

  5. Zhu M, Liu L, Yin S, et al. A reconfigurable multi-processor SoC for media applications. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS 2010), Paris, 2010. 2011–2014

    Google Scholar 

  6. Fu W, Compton K. A simulation platform for reconfigurable computing research. In: Proceedings of 2006 International Conference on Field Programmable Logic and Applications (FPL), Madrid, 2006. 1–7

    Chapter  Google Scholar 

  7. Hsiung P A, Lin C S, Liao C F. Perfecto: a systemc-based design-space exploration framework for dynamically reconfigurable architectures. ACM T Reconfigurable Technol Syst, 2008, 1: 17

    Google Scholar 

  8. Brito A V, Kuehnle M, Melcher E U K, et al. A general purpose partially reconfigurable processor simulator (PReProS). In: Proceedings of 21st International Parallel and Distributed Processing Symposium (IPDPS 2007), Long Beach, 2007. 1–7

    Google Scholar 

  9. De Brito A V, Melcher E U K, Rosas W. An open-source tool for simulation of partially reconfigurable systems using SystemC. In: Proceedings of IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures (ISVLSI), Karlsruhe, 2006. 434–435

    Chapter  Google Scholar 

  10. PACT Inc. The XPP White Paper-release 2.1. http://www.pactxpp.com

  11. Morra C, Cardoso J M P, Bispo J, et al. Retargeting, evaluating, and generating reconfigurable array-based architectures. In: Proceedings of 6th IEEE Symposium on Application Specific Processors (SASP), Anaheim, 2008. 34–41

    Google Scholar 

  12. Zhu M, Liu L, Yin S, et al. A cycle-accurate simulator for a reconfigurable multi-media system. IEICE Trans Inf Syst, 2010, E93-D: 3202–3210

    Article  Google Scholar 

  13. Open SystemC Initiative (OSCI). OSCI TLM-2.0 USER MANUAL. http://www.cl.cam.ac.uk/research/srg/han/ACSP35/documents/TLM_2_0_usermanual.pdf

  14. Synopsys Inc. Simulation tool chain Synopsys VCS. http://www.synopsys.com/tools/verification/functionalverification/pages/vcs.aspx

  15. Bellard F. QEMU: open source processor emulator. http://www.qemu.org

  16. ARM Inc. Multi-layer AHB technical overview v2.0. http://infocenter.arm.com/help/index.jsp

  17. Synopsys Inc. DesignWare DW ahb icm Databook. http://www.synopsys.com/dw/ipdir.php?c=DW_ahb_icm

  18. Yin C, Yin S, Liu L, et al. Compiler framework for reconfigurable computing architecture. IEICE Trans Electron, 2009, E92-C: 1284–1290

    Article  Google Scholar 

  19. Aigner G, Diwan A, Heine D L, et al. An Overview of the SUIF2 Compiler Infrastructure. Technical Report. Computer Systems Laboratory, Stanford University, 2000

    Google Scholar 

  20. Smith M D, Holloway G. An introduction to MachineSUIF and its portable libraries for analysis and optimization. The MachineSUIF Documentation Set. Harvard University, 2002

    Google Scholar 

  21. Ling M, Yang J, Zhang Y. SDRAM power model and instruction FIFO optimization. Chin J Electron Devices, 2005, 28: 834–838

    Google Scholar 

  22. Google Inc. Android OS: an light-weighted OS for mobile device. http://www.android.com

  23. Jia W, Liu L, Yin S, et al. A fast complete deblocking filter on a coarse-grained reconfigurable processor supporting H.264 high profile decoding. In: Proceedings of the 2nd Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Shanghai, 2010. 221–224

    Chapter  Google Scholar 

  24. Ganesan M K A, Singh S, May F, et al. H.264 decoder at HD resolution on a coarse grain dynamically reconfigurable architecture. In: Proceedings of 2007 International Conference on Field Programmable Logic and Applications (FPL 2007), Amsterdam, 2007. 467–471

    Chapter  Google Scholar 

  25. Chang K, Choi K. Mapping control intensive kernels onto coarse-grained reconfigurable array architecture. In: Proceedings of the 5th International SoC Design Conference (ISOCC), Busan, 2008. I:362-I: 365

    Google Scholar 

  26. Arbelo C, Kanstein A, Lòpez S, et al. Mapping control-intensive video kernels onto a coarse-grain reconfigurable architecture: the H.264/AVC deblocking filter. In: Proceedings of Design, Automation and Test in Europe (DATE), Nice Acropolis, 2007. 177–182

    Google Scholar 

  27. Simplight Nanoelectronics Inc. Multi-threaded processor. http://www.simplnano.com/Info_Product.asp?id=180

  28. Simplight Nanoelectronics Inc. Key features of SLM110. http://www.simplnano.com/Info_Product.asp?id=174

  29. Emer J, Ahuja P, Borch E, et al. Asim: a performance model framework. Comput, 2002, 35: 68–76

    Article  Google Scholar 

  30. Chiou D, Sunwoo D, Kim J, et al. FPGA-accelerated simulation technologies (FAST): fast, full-system, cycle-accurate simulators. In: Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Chicago, 2007. 249–261

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Jia, W., Yin, S. et al. ReSSIM: a mixed-level simulator for dynamic coarse-grained reconfigurable processor. Sci. China Inf. Sci. 56, 1–16 (2013). https://doi.org/10.1007/s11432-013-4812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4812-y

Keywords

Navigation