Skip to main content
Log in

Impacts of short-channel effects on the random threshold voltage variation in nanoscale transistors

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, the impacts of device short-channel effects (SCEs) on the random threshold voltage (V TH) variation in nanoscale bulk MOSFETs are investigated. Firstly, the direct relationship between SCEs and random variations are examined. By adopting the electrostatic integrity (EI) as the index for SCEs, clear correlations of device SCEs with random V TH variations are observed, which indicate that the random variations can be reduced by simply improving the SCEs in MOS devices with the same channel doping. In addition, the random dopant fluctuation (RDF) induced σ Vth has a linear relationship with EI and channel doping. Then, considering the contribution of SCEs on RDF modeling, a new normalization method of X VT plot is proposed, which provides a physical way to analyze random V TH variation in nanoscale MOSFETs with different process/device parameters (i.e., with different electrostatic designs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pelgrom M J M, Duinmaijer A C J, Welbers A P G. Matching properties of MOS transistors. IEEE J Solid-State Circuit, 1989, 24: 1433–1440

    Article  Google Scholar 

  2. Asenov A, Brown A R, Davies J H, et al. Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans Electron Device, 2003, 50: 1837–1852

    Article  Google Scholar 

  3. Bernstein K, Frank D J, Gattiker A E, et al. High performance CMOS variability in the 65-nm regime and beyond. IBM J Res Dev, 2006, 50: 433–449

    Article  Google Scholar 

  4. Kuhn K. Variability in nanoscale CMOS technology. Sci China Inf Sci, 2011, 54: 936–945

    Article  Google Scholar 

  5. Takeuchi K, Nishida A, Hiramoto T. Random fluctuations in scaled MOS devices. In: Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, San Diego, 2009. 79–85

    Google Scholar 

  6. Huang R, Wu H M, Kang J F, et al. Challenges of 22 nm and beyond CMOS technology. Sci China Ser F-Inf Sci, 2009, 52: 1491–1533

    Article  Google Scholar 

  7. Wang Y Y. The driving force for development of IC and system in future: Reducing the power consumption and improving the ratio of performance to power consumption. Sci China Inf Sci, 2011, 54: 915–935

    Article  Google Scholar 

  8. Cai Y, Xiong Y, Hong X L, et al. Reliable buffered clock tree routing algorithm with process variation tolerance. Sci China Ser F-Inf Sci, 2005, 48: 670–680

    Article  MathSciNet  MATH  Google Scholar 

  9. Hopsch F, Becker B, Hellebrand S, et al. Variation-aware fault modeling. Sci China Inf Sci, 2011, 54: 1813–1826

    Article  Google Scholar 

  10. Mizuno T, Okamura J, Toriumi A. Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s. IEEE Trans Electron Device, 1994, 41: 2216–2221

    Article  Google Scholar 

  11. Li Y, Hwang C H, Li T Y. Random-dopant-induced variability in nano-CMOS devices and digital circuits. IEEE Trans Electron Device, 2009, 56: 1588–1597

    Article  Google Scholar 

  12. Asenov A, Kaya S, Brown A R. Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE Trans Electron Device, 2003, 50: 1254–1260

    Article  Google Scholar 

  13. Baravelli E, Dixit A, Rooyackers R, et al. Impact of line-edge roughness on FinFET matching performance. IEEE Trans Electron Device, 2007, 54: 2466–2474

    Article  Google Scholar 

  14. Wang R, Yu T, Huang R, et al. New observations of suppressed randomization in LER/LWR of Si nanowire transistors: experiments and mechanism analysis. IEDM Tech Dig, 2010: 792–795

    Google Scholar 

  15. Wang R, Zhuge J, Huang R, et al. Investigation on variability in metal-gate Si nanowire MOSFETs: analysis of variation sources and experimental characterization. IEEE Trans Electron Device, 2011, 58: 2317–2325

    Article  Google Scholar 

  16. Skotnicki T, Fenouillet-Beranger C, Gallon C, et al. Innovative materials, devices, and CMOS technologies for lowpower mobile multimedia. IEEE Trans Electron Device, 2008, 55: 96–130

    Article  Google Scholar 

  17. Sugii N, Tsuchiya R, Ishigaki T, et al. Local V th variability and scalability in silicon-on-thin-box (SOTB) CMOS with small random-dopant fluctuation. IEEE Trans Electron Device, 2010, 57: 835–845

    Article  Google Scholar 

  18. Weber O, Faynot O, Andrieu F, et al. High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding. IEDM Tech Dig, 2008: 245–248

    Google Scholar 

  19. Huff H, Gilmer D. High-K Gate Dielectric Materials for VLSI MOSFET Applications. New York: Springer-Verlag, 2005. 143–194

    Book  Google Scholar 

  20. Schroder D K. Semiconductor Material and Device Characterization. 3rd ed. New Jersey: Wiley, 2006

    Google Scholar 

  21. Stolk P A, Widdershoven F P, Klaassen D B M. Modeling statistical dopant fluctuations in MOS transistors. IEEE Trans Electron Device, 1998, 45: 1960–1971

    Article  Google Scholar 

  22. Taur Y, Ning T H. Fundamentals of Modern VLSI Devices. Cambridge: Cambridge University Press, 1998

    Google Scholar 

  23. Takeuchi K, Fukai T, Tsunomura T, et al. Understanding random threshold voltage fluctuation by comparing multiple fabs and technologies. IEDM Tech Dig, 2007: 467–470

    Google Scholar 

  24. Tsunomura T, Nishida A, Yano F, et al. Analyses of 5 σVth fluctuation in 65 nm-MOSFETs using Takeuchi plot. In: Symposium on VLSI Technology, Honolulu, 2008. 156–157

    Google Scholar 

  25. Tsunomura T, Nishida A, Yano F, et al. Analysis of extra V T variability sources in NMOS using Takeuchi plot. In: Symposium on VLSI Technology, Honolulu, 2009. 110–111

    Google Scholar 

  26. Skotnicki T, Merckel G, Pedron T. The voltage-doping transformation: a new approach to the modeling of MOSFET short-channel effects. IEEE Electron Device Lett, 1988, 9: 109–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Yu, T., Huang, R. et al. Impacts of short-channel effects on the random threshold voltage variation in nanoscale transistors. Sci. China Inf. Sci. 56, 1–7 (2013). https://doi.org/10.1007/s11432-013-4814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4814-9

Keywords

Navigation