Skip to main content
Log in

Pulse-order recursive method for inverse covariance matrix computation applied to space-time adaptive processing

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The conventional space-time adaptive processing (STAP) method such as the typical sample matrix inversion (SMI)-based STAP method is difficult to implement for a practical system because intense computational complexity arises in calculating the inversion of a space-time covariance matrix directly. According to the block Hermitian matrix property of space-time covariance matrix, a new pulse-order recursive method is proposed in this paper to calculate the inverse covariance matrix for the STAP adaptive weight, which can reduce the computational complexity significantly. The proposed method requires initially calculating the inverse covariance matrix of the first pulse-order recursively based on the block Hermitian matrix property. In the following, the inversion of space-time covariance matrix is obtained recursively based on the previous pulse-order inverse covariance matrix. Next, the STAP adaptive weight is calculated based on the inversion space-time covariance matrix previously obtained. Compared with the conventional SMI-based STAP algorithms, the computational complexity of the proposed method is reduced to more than 50% for the same clutter suppression performance. This method can be applied to practical systems benefiting from small computational complexity and stable clutter suppression performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Klemm R. Principles of Space-Time Adaptive Processing. London: Institute of Electrical Engineering, 2006

    Book  Google Scholar 

  2. Guerci J R. Space-Time Adaptive Processing for Radar. Artech House, 2003

    Google Scholar 

  3. Ward J. Space-time adaptive processing for airborne radar. Technical Report 1015, MIT Lincoln Laboratory, Lexington, December 1994

    Google Scholar 

  4. Reed I S, Mallet J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Trans Aerosp Electron Syst, 1974, 10: 853–863

    Article  Google Scholar 

  5. Brennan L E, Mallet J D, Reed I S. Adaptive arrays in airborne MTI radar. IEEE Trans Antennas Propag, 1976, 24: 607–615

    Article  Google Scholar 

  6. Melvin W L. Space-time adaptive radar performance in heterogeneous clutter. IEEE Trans Aerosp Electron Syst, 2000, 36: 621–633

    Article  Google Scholar 

  7. Liu Y, Yang X, Long T. D3-STMB hybrid STAP algorithm for discrete interference suppression in nonhomogeneous clutter. IEICE Trans Commun, 2011, E94-B: 1114–1117

    Article  Google Scholar 

  8. Wang H, Cai L. On adaptive spatial-temporal processing for airborne surveillance radar system. IEEE Trans Aerosp Electron Syst, 1994, 30: 660–670

    Article  Google Scholar 

  9. Guerci J R, Bergin J S. Principal components, covariance matrix tapers, and the subspace leakage problem. IEEE Trans Aerosp Electron Syst, 2002, 38: 152–162

    Article  Google Scholar 

  10. Goldstein J S, Reed I S, Zulc P A. Multistage partially adaptive STAP CFAR detection algorithm. IEEE Trans Aerosp Electron Syst, 1999, 35: 645–661

    Article  Google Scholar 

  11. Fa R, de Lamare R C. Reduced-rank STAP algorithms using joint iterative optimization of filters. IEEE Trans Aerosp Electron Syst, 2011, 47: 1668–1684

    Article  Google Scholar 

  12. Zhu X, Li J, Stoica P. Knowledge-aided space-time adaptive processing. IEEE Trans Aerosp Electron Syst, 2011, 47: 1325–1336

    Article  Google Scholar 

  13. Wu Y, Tang J, Peng Y. On the essence of knowledge-aided clutter covariance estimate and its convergence. IEEE Trans Aerosp Electron Syst, 2011, 47: 569–585

    Article  Google Scholar 

  14. Long T, Liu Y, Yang X. Pre-compensation clutter range-dependence STAP algorithm for forward-looking airborne radar utilizing knowledge-aided subspace projection. IEICE Trans Commun, 2011, E95-B: 97–105

    Article  Google Scholar 

  15. Varadarajan V, Krolik J L. Joint space-time interpolation for distorted linear and bistatic array geometries. IEEE Trans Signal Process, 2006, 54: 848–860

    Article  Google Scholar 

  16. Alexander S T, Ghirnikar A L. A method for recursive least squares filtering based upon an inverse QR decomposition. IEEE Trans Signal Process, 1993, 41: 20–30

    Article  MATH  Google Scholar 

  17. Xiong J, Liao L, Wu S. Recursive algorithm of adaptive weight extraction of space-time signal processing for airborne radar. In: Proceedings of CIE International Conference of Radar, Beijing, 1996. 86–90

    Chapter  Google Scholar 

  18. Cao J, Wang X. Diagonally loaded SMI algorithm based on inverse matrix recursion. J Syst Eng Electron, 2007, 18: 160–163

    Article  Google Scholar 

  19. Cao J, Wang X. New recursive algorithm for matrix inversion. J Syst Eng Electron, 2008, 19: 381–384

    Article  MATH  Google Scholar 

  20. Beau S, Marcos S. Range dependent clutter rejection using range-recursive space-time adaptive processing (STAP) algorithms. Signal Process, 2010, 90: 57–68

    Article  MATH  Google Scholar 

  21. Badeau R, David B, Richard G. Fast approximated power iteration subspace tracking. IEEE Trans Signal Process, 2005, 53: 2931–2941

    Article  MathSciNet  Google Scholar 

  22. Manolakis D G, Ingle V K, Kogon S M. Statistical and Adaptive Signal Processing. McGraw-Hill, 2000

    Google Scholar 

  23. Golub G H, van Loan C F. Matrix Computations. Baltimore: Johns Hopkins University Press, 1996

    MATH  Google Scholar 

  24. Braham H. MCARM/STAP data analysis. Final Technical Report, AFRL-IF-RS-TR-1999-48, Vol. I–II, Air Force Research Laboratory, May 1999

  25. Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans Aerosp Electron Syst, 1988, 24: 397–401

    Article  Google Scholar 

  26. Benjamin F A. A subspace method for space time adaptive processing. IEEE Trans Signal Process, 2005, 53: 74–82

    Article  MathSciNet  Google Scholar 

  27. Dong Y. Approximate invariance of the inverse of the covariance matrix and the resultant pre-built STAP processor. Research Report, DSTO-RR-0291, Defence Science and Technology Organisation, Australia, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPeng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Liu, Y. & Long, T. Pulse-order recursive method for inverse covariance matrix computation applied to space-time adaptive processing. Sci. China Inf. Sci. 56, 1–12 (2013). https://doi.org/10.1007/s11432-013-4828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4828-3

Keywords

Navigation