Skip to main content
Log in

Volumetric data modeling and analysis based on seven-directional box spline

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The existing methods for visualizing volumetric data are mostly based on piecewise linear models. And all kinds of analysis based on them have to be substituted by coarse interpolations. So both accuracy and reliability of the traditional framework for visualization and analysis of volumetric data are far from our needs of digging information implied in volumetric data fields. In this paper, we propose a novel framework based on a C 2-continuous seven-directional box spline, under which reconstruction is of high accuracy and differential computations relative to analysis based on the reconstruction model are accurate. We introduce a polynomial differential operator to improve the reconstruction accuracy. In order to settle the difficulty of evaluating upon the seven-directional box spline, we convert it into Bézier form and propose effective theories and algorithms of extracting iso-surfaces, critical points and curvatures. Plentiful of examples are also given in this paper to illustrate that the novel framework is suitable for analysis, the improved reconstruction method has high accuracy, and our algorithms are fast and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Milnor J W. Morse theory. Princeton: Princeton University Press, 1963

    MATH  Google Scholar 

  2. Edelsbrunner H, Harer J, Natarajan V, et al. Morse-Smale complexes for piecewise linear 3-manifolds. In: ACM Proceedings of the 19th annual symposium on Computational geometry. New York: ACM, 2003. 361–370

    Google Scholar 

  3. Pascucci V, Cole-McLaughlin K. Efficient computation of the topology of level sets. In: Proceedings of the conference on Visualization’02, Boston, 2002. 187–194

    Google Scholar 

  4. Pascucci V, Cole-McLaughlin K, Scorzelli G. Multi-resolution computation and presentation of contour trees. In: Proceedings of IASTED Conference on Visualization, Imaging, and Image Processing, Marbella, 2004. 452–290

    Google Scholar 

  5. Lorensen W E, Cline H E. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph, 1987, 21: 163–169

    Article  Google Scholar 

  6. Entezari A, Möller T. Extensions of the Zwart-Powell box spline for volumetric data reconstruction on the Cartesian lattice. IEEE Trans Vis Comput Graph, 2006, 12: 1337–1344

    Article  Google Scholar 

  7. Kim M, Peters J. Fast and stable evaluation of box-splines via the BB-form. Numer Algorithms, 2009, 50: 381–399

    Article  MATH  MathSciNet  Google Scholar 

  8. Newman T S, Yi H. A survey of the marching cubes algorithm. Comput Graph, 2006, 30: 854–879

    Article  Google Scholar 

  9. Co C S, Hamann B, Joy K I. Iso-splatting: a point-based alternative to isosurface visualization. In: IEEE 11th Pacific Conference on Computer Graphics and Applications. Washington D. C.: IEEE, 2003. 325–334

    Google Scholar 

  10. Livnat Y, Nagtegaal X T. Interactive point-based isosurface extraction. In: IEEE Visualization, Austin, 2004. 457–464

    Google Scholar 

  11. Baerentzen J A, Christensen N J. Hardware accelerated point rendering of isosurfaces. J WSCG, 2003, 11: 41–48

    Google Scholar 

  12. Von Rymon-Lipinski B, Hanssen N, Jansen T, et al. Efficient point-based isosurface exploration using the span-triangle. In: Proceedings of the conference on Visualization’04. Washington D.C.: IEEE, 2004. 441–448

    Google Scholar 

  13. Vrolijk B, Botha C P, Post F H. Fast time-dependent isosurface extraction and rendering. In: ACM Proceedings of the 20th Spring Conference on Computer Graphics, 2004. 45–54

    Chapter  Google Scholar 

  14. Kalbe T, Koch T, Goesele M. High-quality rendering of varying isosurfaces with cubic trivariate C1-continuous splines. In: Proceedings of the 5th International Symposium on Advances in Visual Computing. Berlin/Heidelberg: Springer-Verlag, 2009. 596–607

    Chapter  Google Scholar 

  15. Weber G H, Scheuermann G, Hagen H, et al. Exploring scalar fields using critical isovalues. In: IEEE Visualization, Boston, 2002. 171–178

    Google Scholar 

  16. Weber G H, Scheuermann G, Hamann B. Detecting critical regions in scalar fields. In: Proceedings of the Symposium on Data Visualisation. Switzerland: Eurographics Association Aire-la-Ville, 2003. 85–94

    Google Scholar 

  17. Gyulassy A, Natarajan V. Topology-based simplification for feature extraction from 3d scalar fields. In: IEEE Visualization, Minneapolis, 2005. 535–542

    Google Scholar 

  18. Weber G H, Bremer P T, Pascucci V. Topological landscapes: a terrain metaphor for scientific data. IEEE Trans Vis Comput Graph, 2007, 13: 1416–1423

    Article  Google Scholar 

  19. Edelsbrunner H, Harer J, Zomorodian A. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput Geom, 2003, 30: 87–107

    Article  MATH  MathSciNet  Google Scholar 

  20. Bremer P T, Hamann B, Edelsbrunner H, et al. A topological hierarchy for functions on triangulated surfaces. IEEE Trans Vis Comput Graph, 2004, 10: 385–396

    Article  Google Scholar 

  21. Goldfeather J, Interrante V. A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans Graph, 2004, 23: 45–63

    Article  Google Scholar 

  22. Rusinkiewicz S. Estimating curvatures and their derivatives on triangle meshes. In: the 2nd International Symposium on 3D Data Processing, Visualization and Transmission. Washington D.C.: IEEE, 2004. 486–493

    Google Scholar 

  23. Batagelo H C, Wu S T. Estimating curvatures and their derivatives on meshes of arbitrary topology from sampling directions. Vis Comput, 2007, 23: 803–812

    Article  Google Scholar 

  24. Griffin W, Wang Y, Berrios D, et al. GPU curvature estimation on deformable meshes. ACM SIGGRAPH Comput Graph, 1989, 23: 185–194

    Google Scholar 

  25. Finkbeiner B, Entezari A, van De Ville D, et al. Efficient volume rendering on the body centered cubic lattice using box splines. Comput Graph, 2010, 34: 409–423

    Article  Google Scholar 

  26. Entezari A, Dyer R, Möller T. Linear and cubic box splines for the body centered cubic lattice. In: IEEE Visualization, Austin, 2004. 11–18

    Google Scholar 

  27. Entezari A, van De Ville D, Möller T. Practical box splines for reconstruction on the body centered cubic lattice. IEEE Trans Vis Comput Graph, 2008, 14: 313–328

    Article  Google Scholar 

  28. De Boor C, Höllig K. B-splines from parallelepipeds. J Anal Math, 1982, 42: 99–115

    Article  Google Scholar 

  29. McCool M D. Optimized evaluation of Box splines via the inverse FFT. In: Conference on Graphics Interface, Quebec, 1995. 34–43

    Google Scholar 

  30. McCool M D. Accelerated evaluation of box splines via a parallel inverse FFT. Comput Graph Forum, 1996, 15: 35–45

    Article  Google Scholar 

  31. De Boor C, Höllig K, Riemenschneider S D. Box Splines. Berlin: Springer, 1993

    Book  MATH  Google Scholar 

  32. Lu J, Wang R, Fang M E, et al. Quasi-interpolation based volume reconstruction with high accuracy. J Comput Aid Des Graph, 2013, 25: 1107–1113

    Google Scholar 

  33. Lyche T, Manni C, Sablonniére P. Quasi-interpolation projectors for box splines. J Comput Appl Math, 2008, 221: 416–429

    Article  MATH  MathSciNet  Google Scholar 

  34. Farin G E, Hoschek J. Handbook of Computer Aided Geometric Design. North Holland, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MeiE Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, M., Lu, J. & Peng, Q. Volumetric data modeling and analysis based on seven-directional box spline. Sci. China Inf. Sci. 57, 1–14 (2014). https://doi.org/10.1007/s11432-013-4941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4941-3

Keywords

Navigation