Skip to main content
Log in

Design of efficiently encodable nonbinary LDPC codes for adaptive coded modulation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper is concerned with constructions of nonbinary low-density parity-check (LDPC) codes for adaptive coded modulations (ACM). A new class of efficiently encodable structured nonbinary LDPC codes are proposed. The defining parity-check matrices are composed of scalar circulant sub-matrices which greatly reduce the storage requirement when compared with random LDPC codes. With this special structure of parity-check matrix, an efficient encoding algorithm is presented. Based on the proposed codes, a family of variablerate/variable-field nonbinary LDPC codes is designed for the ACM system. When combined with matched-size signal constellations, the family of constructed codes can achieve a wide range of spectral efficiency. Furthermore, the resultant ACM system can be implemented via a set of encoder and decoder. Simulation results show that the proposed nonbinary LDPC codes for the ACM system perform well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gallager R G. Low density parity check codes. IRE Trans Inform Theory, 1962, 8: 21–28

    Article  MATH  MathSciNet  Google Scholar 

  2. MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electron Lett, 1997, 33: 457–458

    Article  Google Scholar 

  3. Spielman D A. Linear-time encodable and decodable error-correcting codes. IEEE Trans Inform Theory, 1996, 42: 1723–1731

    Article  MATH  MathSciNet  Google Scholar 

  4. Davey M C, MacKay D J C. Low density parity check codes over GF(q). IEEE Commun Lett, 1998, 2: 165–167

    Article  Google Scholar 

  5. MacKay D J C, Davey M C. Evaluation of gallager codes for short block length and high rate application. In: International Conference on Mathematic and its Applications: Codes, Systems and Graphincal Models, New York, 2000. 113–130

    Google Scholar 

  6. Barnault L, Declercq D. Fast decoding algorithm for nonbinary LDPC codes over GF(q). In: IEEE Information Theory Workshop, Paris France, 2003. 70–73

    Google Scholar 

  7. Zeng L Q, Lan L, Tai Y Y, et al. Dispersed Reed-Solomon codes for iterative decoding and construction of q-ary LDPC codes. In: IEEE Global Telecommunications Conference, St. Louis, 2005. 1193–1198

    Google Scholar 

  8. Zeng L Q, Lan L, Tai Y Y, et al. Constructions of nonbinary quasi-cyclic LDPC codes: a finite field approach. IEEE Trans Commun, 2008, 56: 545–554

    Article  Google Scholar 

  9. Voicila A, Declercq D, Verdier F, et al. Low-complexity, low-memory EMS algorithm for nonbinary LDPC codes. In: IEEE International Conference on Communications, Glasgow, 2007. 671–676

    Google Scholar 

  10. Ma X, Zhang K, Chen H Q, et al. Low complexity X-EMS algorithms for nonbinary LDPC codes. IEEE Trans Commun, 2012, 60: 9–13

    Article  Google Scholar 

  11. Goldsmith A. Wireless Communications. Cambridge: Cambridge University Press, 2005

    Book  Google Scholar 

  12. Caire G, Kumar K R. Information theoretic foundations of adaptive coded modulation. Proc IEEE, 2007, 95: 2269–2273

    Article  Google Scholar 

  13. Kou Y, Lin S, Fossorier M P C. Low-density parity-check codes based on finite geometries: a discovery and new results. IEEE Trans Inform Theory, 2001, 47: 2711–2736

    Article  MATH  MathSciNet  Google Scholar 

  14. Tanner R M, Sridhara D, Sridharan A, et al. LDPC block and convolutional codes based on circulant matrices. IEEE Trans Inform Theory, 2004, 50: 2966–2984

    Article  MATH  MathSciNet  Google Scholar 

  15. Lan L, Zeng L Q, Tai Y Y, et al. Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach. IEEE Trans Inform Theory, 2007, 53: 2429–2458

    Article  MathSciNet  Google Scholar 

  16. Fossorier M. Quasi-cyclic low-density parity-check codes from ciuculant permutation matrices. IEEE Trans Inform Theory, 2004, 50: 1788–1793

    Article  MathSciNet  Google Scholar 

  17. Declercq D, Fossorier M. Decoding algorithms for nonbinary LDPC codes over GF(q). IEEE Trans Commun, 2007, 55: 633–643

    Article  Google Scholar 

  18. Zhao S C, Ma X, Zhang X Y, et al. A class of nonbinary LDPC codes with fast encoding and decoding algorithms. IEEE Trans Commun, 2013, 60: 1–6

    Article  Google Scholar 

  19. Goupil A, Colas M, Gelle G, et al. FFT-based BP decoding of general LDPC codes over Abelian groups. IEEE Trans Commun, 2007, 55: 644–649

    Article  Google Scholar 

  20. Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems—Part I: chunk allocation. IEEE Trans Commun, 2009, 57: 2734–2744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuNi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, X. & Bai, B. Design of efficiently encodable nonbinary LDPC codes for adaptive coded modulation. Sci. China Inf. Sci. 57, 1–11 (2014). https://doi.org/10.1007/s11432-013-4948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4948-9

Keywords

Navigation