Skip to main content
Log in

A 2.4 GHz low power CMOS transceiver for LR-WPAN applications

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A 2.4 GHz low power transceiver for low-rate wireless personal area network (LR-WPAN) applications is presented. The optimized low-IF receiver consists of a novel current reuse RF front-end with an inductor-less-load balun LNA and quadrature mixer, and an adaptive analog baseband to reduce power and area. It achieves −94 dBm of sensitivity, −9 dBm of IIP3 and 28 dBc of image rejection. The phase-locked loop based direct phase modulated transmitter is proposed to reduce power and deliver a +3 dBm output power. The phase noise of the low power frequency synthesizer with current reuse stacked LC-VCO achieves −107.8 dBc/Hz at 1 MHz offset. An ultra-low power nonvolatile memory is used to store configuration data and save power. The chip is implemented in a 0.18 μm CMOS process, and the area is less than 2.8 mm2. The transceiver consumes only 10.98 mW in the receiving mode and 13.32 mW in the transmitting mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEEE 802Working Group. Standard for Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs). ANSI/IEEE 802.15, 2003

    Google Scholar 

  2. Choi P, Park H C, Kim S, et al. An experimental coin-sized radio for extremely low-power WPAN (IEEE 802.15. 4) application at 2.4 GHz. IEEE J Solid State Circuits, 2003, 38: 2258–2268

    Article  Google Scholar 

  3. Razavi B. Challenges in portable RF transceiver design. Circuits Devices Mag, 1996, 12: 12–25

    Article  Google Scholar 

  4. Nguyen T K, Krizhanovskii V, Lee J, et al. A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18-CMOS technology. IEEE Trans Microwave Theory Tech, 2006, 54: 4062–4071

    Article  Google Scholar 

  5. Kluge W, Poegel F, Roller H, et al. A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee applications. IEEE J Solid State Circuits, 2006, 41: 2767–2775

    Article  Google Scholar 

  6. Yu R, Yeo T T, Tan K H, et al. A 5.5 mA 2.4-GHz two-point modulation ZigBee transmitter with modulation gain calibration. In: Proceedings of IEEE Custom Integrated Circuits Conference, San Jose, 2009. 375–378

    Google Scholar 

  7. Retz G, Shanan H, Mulvaney K, et al. A highly integrated low-power 2.4 GHz transceiver using a direct-conversion diversity receiver in 0.18 μm CMOS for IEEE 802.15.4 WPAN. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2009. 414–415

    Google Scholar 

  8. Tedeschi M, Liscidini A, Castello R. Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J Solid State Circuits, 2010, 45: 1710–1719

    Article  Google Scholar 

  9. Raja M K, Chen X, Lei Y D, et al. A 18 mWTx, 22 mW Rx transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-μm CMOS. In: Proceedings of IEEE Asian Solid State Circuits Conference, Beijing, 2010. 1–4

    Google Scholar 

  10. Kwon Y I, Park S G, Park T J, et al. An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications. IEEE Trans Circuits Syst I: Regular Papers, 2012, 59: 324–336

    Article  MathSciNet  Google Scholar 

  11. Karam V, Popplewell P H R, Shamim A, et al. A 6.3 GHz BFSK transmitter with on-chip antenna for self-powered medical sensor applications. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, Honolulu, 2007. 101–104

    Google Scholar 

  12. Peng K C, Huang C H, Li C J, et al. High-performance frequency-hopping transmitters using two-point delta-sigma modulation. IEEE Trans Microwave Theory Tech, 2004, 52: 2529–2535

    Article  Google Scholar 

  13. Feng P, Li Y, Wu N. An ultra low power non-volatile memory in standard CMOS process for passive RFID tags. In: Proceedings of IEEE Custom Integrated Circuits Conference, San Jose, 2009. 713–716

    Google Scholar 

  14. Lee S G, Choi J K. Current-reuse bleeding mixer. Electron Lett, 2000, 36: 696–697

    Article  Google Scholar 

  15. Wu J, Jiang P, Chen D, et al. A dual-band GNSS RF front end with a pseudo-differential LNA. IEEE Trans Circuits Syst II: Express Briefs, 2011, 58: 134–138

    Article  Google Scholar 

  16. Belostotski L, Haslett J W. Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors. IEEE Trans Circuits Syst I: Regular Papers, 2006, 53: 1409–1422

    Article  Google Scholar 

  17. Kaukovuori J, Stadius K, Ryynanen J, et al. Analysis and design of passive polyphase filters. IEEE Trans Circuits Syst I: Regular Papers, 2008, 55: 3023–3037

    Article  MathSciNet  Google Scholar 

  18. Sowlati T, Leenaerts D M W. A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier. IEEE J Solid State Circuits, 2003, 38: 1318–1324

    Article  Google Scholar 

  19. Wong A, Dawkins M, Devita G, et al. A 1V 5mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2012. 300–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NanJian Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, J., Liu, X. et al. A 2.4 GHz low power CMOS transceiver for LR-WPAN applications. Sci. China Inf. Sci. 57, 1–13 (2014). https://doi.org/10.1007/s11432-013-4981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4981-8

Keywords

Navigation