Skip to main content
Log in

Reduced-rank space-time adaptive detection for airborne radar

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

For airborne radar, there are usually insufficient independent and identically distributed (IID) training data because of geometric considerations and terrain variations. The rank reduction technique is one of the most effective approaches to circumvent this problem. In this study, we investigate four reduced-rank spacetime adaptive detectors for airborne radar, namely, the reduced-rank sample-matrix-inversion (RR-SMI), the reduced-rank adaptive matched filter (RR-AMF), the reduced-rank adaptive coherence estimator (RR-ACE), and the reduced-rank generalized likelihood ratio test (RR-GLRT). Their asymptotic analytical probabilities of detection (PD’s) and false alarm (PFA’s) are all derived. These detectors all asymptotically attain a constant false alarm rate (CFAR). It is shown that these four reduced-rank detectors exhibit detection performance which is better than or comparable to that of two existing reduced-rank detectors, proposed by Reed and Gau (RG1 and RG2). Moreover, these four reduced-rank detectors are more robust to change in power of clutter and noise than RG1 and RG2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guerci J R, Bergin J S. Principal components, covariance matrix tapers, and the subspace leakage problem. IEEE Trans Aerospace Electron Syst, 2002, 38: 152–162

    Article  Google Scholar 

  2. Duan K Q, Xie W C, Wang Y L. Nonstationary clutter suppression for airborne conformal array radar. Sci China Inf Sci, 2011, 54: 2170–2177

    Article  MathSciNet  Google Scholar 

  3. Wu R B, Jia Q Q, Li H. A novel STAP method for the detection of fast air moving targets from high speed platform. Sci China Inf Sci, 2012, 55: 1259–1269

    Article  MathSciNet  Google Scholar 

  4. Gong W F, Sun X. An improved reduced-rank stap interference suppression method in design of GNSS receivers. Sci China Inf Sci, 2012, 55: 2329–2342

    Article  MATH  MathSciNet  Google Scholar 

  5. Wang Y L, Chen J W, Bao Z, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments. IEEE Trans Aerospace Electron Syst, 2003, 39: 70–81

    Article  Google Scholar 

  6. Reed I S, Gau Y L. A fast CFAR detection space-time adaptive processing algorithm. IEEE Trans Signal Process, 1999, 47: 1151–1154

    Article  MathSciNet  Google Scholar 

  7. Gau Y L, Reed I S. An improved reduced-rank CFAR space-time adaptive radar detection algorithm. IEEE Trans Signal Process, 1998, 46: 2139–2146

    Article  Google Scholar 

  8. Haimovich A. The eigencanceler: adaptive radar by eigenanalysis methods. IEEE Trans Aerospace Electron Syst, 1996, 32: 532–542

    Article  Google Scholar 

  9. Goldstein J S, Reed I S. Theory of partially adaptive radar. IEEE Trans Aerospace Electron Syst, 1997, 33: 1309–1325

    Article  Google Scholar 

  10. Zhuang X B, Cui X W, Lu M Q, et al. Numerically stable method of signal subspace estimation based on multistage Wiener filter. Sci China Inf Sci, 2010, 53: 2620–2630

    Article  MATH  MathSciNet  Google Scholar 

  11. Ren P, Wang R, Zhang S. Rectangle blocking matrices based unitary multistage wiener reduced-rank joint detection algorithm for multiple input multiple output systems. Sci China Inf Sci, 2010, 53: 2116–2126

    Article  Google Scholar 

  12. Goldstein J S, Reed I S, Scharf L L. A multistage representation of the wiener filter based on orthogonal projections. IEEE Trans Inform Theory, 1998, 44: 2943–2959

    Article  MATH  MathSciNet  Google Scholar 

  13. Pados D A, Batalama S N. Joint space-time auxiliary-vector filtering for ds/cdma systems with antenna arrays. IEEE Trans Commun, 1999, 47: 1406–1415

    Article  Google Scholar 

  14. Fa R, de Lamare R C. Reduced-rank STAP algorithms using joint iterative optimization of filters. IEEE Trans Aerospace Electron Syst, 2011, 47: 1668–1684

    Article  Google Scholar 

  15. Wang L, de Lamare R C. Adaptive constrained constant modulus algorithm based on auxiliary vector filtering for beamforming. IEEE Trans Signal Process, 2010, 58: 5408–5413

    Article  MathSciNet  Google Scholar 

  16. Santos E L, Zoltowski M D, Rangaswamy M. Indirect dominant mode rejection: a solution to low sample support beamforming. IEEE Trans Signal Process, 2007, 55: 3283–3293

    Article  MathSciNet  Google Scholar 

  17. Guerci J R, Goldstein J S, Reed I S. Optimal and adaptive reduced-rank STAP. IEEE Trans Aerospace Electron Syst, 2000, 36: 647–663

    Article  Google Scholar 

  18. Ward J. Space-Time Adaptive Processing for Airborne Radar. Technical Report, Lincoln Lab, Lexington. 1994

    Google Scholar 

  19. Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Trans Aerospace Electron Syst, 1974, AES-10: 853–863

    Article  Google Scholar 

  20. Chen W S, Reed I S. A new CFAR detection test for radar. Digit Signal Process, 1991, 1: 198–214

    Article  Google Scholar 

  21. Robey F C, Fuhrmann D R, Kelly E J, et al. A CFAR adaptive matched filter detector. IEEE Trans Aerospace Electron Syst, 1992, 28: 208–216

    Article  Google Scholar 

  22. Kraut S, Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans Signal Process, 1999, 47: 2538–2541

    Article  Google Scholar 

  23. Kelly E J. An adaptive detection algorithm. IEEE Trans Aerospace Electron Syst, 1986, AES-22: 115–127

    Article  Google Scholar 

  24. Liu W, Xie W, Wang Y. Diagonally loaded space-time adaptive detection. In: Proceedings of IEEE International Conference on Radar, Chengdu, 2011. 1115–1119

    Google Scholar 

  25. Haimovich A M, Berin M. Eigenanalysis-based space-time adaptive radar: performance analysis. IEEE Trans Aerospace Electron Syst, 1997, 33: 1170–1179

    Article  Google Scholar 

  26. Ayoub T F, Haimovich A R. Modified GLRT signal detection algorithm. IEEE Trans Aerospace Electron Syst, 2000, 36: 810–818

    Article  Google Scholar 

  27. Gau Y L. CFAR Detection Algorithms for STAP Airborne Radar. University of Southern California, Ph.D. Dissertation. University of Southern California, 1996

    Google Scholar 

  28. Liu W J, Xie W C, Wang Y L. AMF and ACE detectors based on diagonal loading. J Syst Eng Electron, 2013, 35: 463–468

    Google Scholar 

  29. Liu W J, Xie W C, Wang Y L. Some complex statistical distributions in complex-valued signal detection theory. Acta Electron Sinica, 2013, 41: 1238–1241

    MathSciNet  Google Scholar 

  30. Kelly E J, Forsythe K M. Adaptive Detection and Parameter Estimation for Multidimensional Signal Models. Technical Report, Lincoln Lab, Lexington. 1989

    Google Scholar 

  31. Kirsteins I P, Tufts D W. Rapidly adaptive nulling of interference. High Resolution Methods in Underwater Acoustics. Berlin Heidelberg: Springer, 1991. 220–249

    Google Scholar 

  32. Scharf L L, Friedlander B. Matched subspace detectors. IEEE Trans Signal Process, 1994, 42: 2146–2157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiJian Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Liu, W., Xie, W. et al. Reduced-rank space-time adaptive detection for airborne radar. Sci. China Inf. Sci. 57, 1–11 (2014). https://doi.org/10.1007/s11432-013-4984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4984-5

Keywords

Navigation