Skip to main content
Log in

Möbius-invariant curve and surface energies and their applications

  • Research Paper
  • Special Focus
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Curvature-based surface energies are frequently used in mathematics, physics, thin plate and shell engineering, and membrane chemistry and biology studies. Invariance under rotations and shifts makes curvature-based energies very attractive for modeling various phenomena. In computer-aided geometric design, the Willmore surfaces and the so-called minimum variation surfaces (MVS) are widely used for shape modeling purposes. The Willmore surfaces are invariant w.r.t conformal transformations (Möbius or conformal invariance), and studied thoroughly in differential geometry and related disciplines. In contrast, the minimum variation surfaces are not conformal invariant. In this paper, we suggest a simple modification of the minimum variation energy and demonstrate that the resulting modified MVS enjoy Möbius invariance (so we call them conformal-invariant MVS or, shortly, CI-MVS).We also study connections of CI-MVS with the cyclides of Dupin. In addition, we consider several other conformal-invariant curve and surface energies involving curvatures and curvature derivatives. In particular, we show how filtering with a conformal-invariant curve energy can be used for detecting salient subsets of the principal curvature extremum curves used by Hosaka and co-workers for shape quality inspection purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Euler L. Additamentum ‘de curvis elasticis’. In: Methodus Inveniendi Lineas Curvas Maximi Minimive Probprietate Gaudentes, Lausanne. 1744

    Google Scholar 

  2. Levien R. The Elastica: A Mathematical History. Technical Report UCB/EECS-2008-103. EECS Department, University of California, Berkeley, 2008

    Google Scholar 

  3. Willmore T J. Note on embedded surfaces. Anal Stunt Ale Univ Sect Ia, 1965, 11B: 493–496

    MathSciNet  Google Scholar 

  4. Willmore T J. Surfaces in conformal geometry. Ann Glob Anal Geom, 2000, 18: 255–264

    Article  MathSciNet  MATH  Google Scholar 

  5. White J H. A global invariant of conformal mappings in space. Proc Amer Math Soc, 1973, 38: 162–164

    Article  MathSciNet  MATH  Google Scholar 

  6. Hertrich-Jeromin U. Introduction to Möbius Differential Geometry. Cambridge: Cambridge University Press, 2003

    Google Scholar 

  7. Gravesen J, Upgstrup M. Constructing invariant fairness measures for surfaces. Adv Comput Math, 2002, 17: 67–88

    Article  MathSciNet  MATH  Google Scholar 

  8. Guven J. Conformally invariant bending energy for hypersurfaces. J Phys A-Math Theor, 2005, 38: 7943–7956

    Article  MathSciNet  MATH  Google Scholar 

  9. Bohle C, Peters G P, Pinkall U. Constrained Willmore surfaces. Calc Var Partial Differ Equ, 2008, 32: 263–277

    Article  MathSciNet  MATH  Google Scholar 

  10. Riviére T. Analysis aspects of Willmore surfaces. Invent Math, 2008, 174: 1–45

    Article  MathSciNet  MATH  Google Scholar 

  11. Marques F C, Neves A. Min-max theory and the Willmore conjecture. http://arxiv.org/abs/1202.6036, 2012

    Google Scholar 

  12. Bobenko A I, Schröder P. Discrete Willmore flow. In: Eurographics Symposium on Geometry Processing. Switzerland: Eurographics Association Aire-la-Ville, 2005. 101–110

    Google Scholar 

  13. Wardetzky M, Bergou M, Harmon D, et al. Discrete quadratic curvature energies. Comput Aided Geom Des, 2007, 24: 499–518

    Article  MathSciNet  MATH  Google Scholar 

  14. Moreton H P, Séquin C H. Surface design with minimum energy networks. In: Proceedings of ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications. New York: ACM, 1991. 291–301

    Chapter  Google Scholar 

  15. Moreton H P, Séquin C H. Functional optimization for fair surface design In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1992. 167–176

    Google Scholar 

  16. Joshi P, Séquin C. Energy minimizers for curvature-based surface functionals. Comput-Aided Des Appl, 2007, 4: 607–618

    Google Scholar 

  17. Xu G, Zhang Q. Minimal mean-curvature-variation surfaces and their applications in surface modeling. In: Proceedings of International Conference on Geometric Modeling and Processing. Berlin: Springer-Verlag, 2006. 357–370

    Google Scholar 

  18. Yoshizawa S, Belyaev A. Conformally invariant energies and minimum variation surfaces. In: Proceedings of Asian Conference on Design and Digital Engineering, Niseko, 2012. 20

    Google Scholar 

  19. Mann S, Dorst L. Geometric algebra: a computational framework for geometrical applications, part 2. IEEE Comput Graph Appl, 2002, 22: 58–67

    Article  Google Scholar 

  20. Wareham R, Cameron J, Lasenby J. Applications of conformal geometric algebra in computer vision and graphics In: Proceedings of International Conference on Computer Algebra and Geometric Algebra with Applications. Berlin: Springer-Verlag, 2005. 329–349

    Chapter  Google Scholar 

  21. Gu X, Yau S T. Surface classification using conformal structures. In: Proceedings of IEEE International Conference on Computer Vision. Washington DC: IEEE, 2003. 701–708

    Chapter  Google Scholar 

  22. Mehra R, Tripathi P, Sheffer A, et al. Visibility of noisy point cloud data. Comput Graph, 2010, 34: 219–230

    Article  Google Scholar 

  23. Bastl B, Jüttler B, Lávička M, et al. Curves and surfaces with rational chord length parameterization. Comput Aided Geom Des, 2012, 29: 231–241

    Article  Google Scholar 

  24. Weatherburn C E. Differential Geometry of Three Dimensions, vol. I. Cambridge: Cambridge University Press, 1927

    Google Scholar 

  25. Struik D J. Lectures on Classical Differential Geometry. 2nd ed. New York: Dover Publications, 1988

    MATH  Google Scholar 

  26. Chandru V, Dutta D, Hoffmann C M. On the geometry of Dupin cyclides. Vis Comput, 1989, 5: 277–290

    Article  Google Scholar 

  27. Foufou S, Garnier L. Dupin cyclide blends between quadric surfaces for shape modeling. Comput Graph Forum, 2004, 23: 321–330

    Article  Google Scholar 

  28. Hosaka M. Modeling of Curves and Surfaces in CAD/CAM. Berlin: Springer, 1992

    Book  Google Scholar 

  29. Yoshizawa S, Belyaev A, Yokota H, et al. Fast, robust, and faithful methods for detecting crest lines on meshes. Comput Aided Geom Des, 2008, 25: 545–560

    Article  MathSciNet  MATH  Google Scholar 

  30. Nealen A, Igarashi T, Sorkine O, et al. Fibermesh: designing freeform surfaces with 3-D curves. ACM Trans Graph, 2007, 26: 41

    Article  Google Scholar 

  31. Wang C P. Surfaces in Möbius geometry. Nagoya Math J, 1992, 125: 53–72

    MathSciNet  MATH  Google Scholar 

  32. Monga O, Benayoun S, Faugeras O D. From partial derivatives of 3-D density images to ridge lines. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Champaign, 1992. 354–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Yoshizawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshizawa, S., Belyaev, A. Möbius-invariant curve and surface energies and their applications. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-013-4997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4997-0

Keywords

Navigation