Skip to main content
Log in

Interference management for rate-constrained moving relay node in a heterogeneous network

异构网络中基于速率保障的移动中继干扰管理算法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Cooperative communication via a moving relay node (MRN) helps resolve both the poor quality of service (QoS) and limited battery-capacity problems of cell-edge vehicle user equipment (VUE). This paper investigates the performance of MRNs in a heterogeneous network (HetNet). MRNs as well as other small cells are expected to coexist in a complex manner. In such a HetNet, the inter-cell interference may degrade the expected improvement of MRNs, especially at the cell-edge. In this paper, we investigate the impact of intercell interference on the performance of MRNs. To alleviate this impact, we first formulated a general optimization problem for which it is intractable to find a global optimal solution. To have a practical solution with low computational complexity, we used a practical interference management algorithm that aimed to ensure that every MRN achieved its required minimum-rate while maximizing total network throughput. In the simulations, the proposed algorithm was observed to improve both the QoS and fairness of MRNs. Numerical results demonstrate that the proposed algorithm can offer an efficient trade-off between the performance of both the victim MRNs and aggressing femtocells.

摘要

基于移动中继(Mobile Relay Node, MRN)的协作通信主要用于解决小区边缘区域车载用户服务质量(Quality of Service, QoS)无法保障的问题。 鉴于异构网络中小区间干扰可能会影响到移动中继下的车载用户, 本文主要关注移动中继的性能保障问题。 本文首先尝试将其建模为一般的优化问题, 该优化问题可以在保障每个移动中继最小速率需求的前提下最大化整个网络的吞吐量。 由于该问题很难找到全局最优解, 而实际网络中需要低运算复杂度的可实施方案, 为此本文提出了一种简单可行的干扰管理算法。 通过仿真实验可以看到所提出的低复杂度算法能够很好地提升移动中继节点的性能, 并且确保不同移动中继之间的公平性, 同时仿真结果表明本文算法能够更好地均衡车载用户和微小区用户之间的性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. 3GPP TR 36. 836. Technical Specification Group Radio Access Network. Mobile Relay for E-UTRA. 3GPP Technical Report (Release 11). 2012

    Google Scholar 

  2. Sui Y T, Papadogiannis A, Svensson T. The potential of moving relays-a performance analysis. In: Proceedings of IEEE VTC Spring, Yokohama, 2012. 1–5

    Google Scholar 

  3. Sui Y T, Papadogiannis A, Yang W, et al. Performance comparison of fixed and moving relays under co-channel interference. In: Proceedings of IEEE GC Wkshps, Anaheim, 2012. 574–579

    Google Scholar 

  4. Balakrishnan R, Yang X, Venkatachalam M, et al. Mobile relay and group mobility for 4G WiMAX networks. In: Proceedings of IEEE WCNC, Cancun, 2011. 1224–1229

    Google Scholar 

  5. Sui Y T, Vihriala J, Papadogiannis A, et al. Moving cells: a promising solution to boost performance for vehicular users. IEEE Commun Mag, 2013, 51: 62–68

    Article  Google Scholar 

  6. Zahir T, Arshad K, Nakata A, et al. Interference management in femtocells. IEEE Commun Surv Tut, 2013, 15: 293–311

    Article  Google Scholar 

  7. Lopez-Perez D, Guvenc I, De La Roche G, et al. Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wirel Commun, 2011, 18: 22–30

    Article  Google Scholar 

  8. Son K, Lee S, Yi Y, et al. REFIM: a practical interference management in heterogeneous wireless access networks. IEEE J Sel Area Comm, 2011, 29: 1260–1272

    Article  Google Scholar 

  9. Tao M X, Liu Y. A network flow approach to throughput maximization in cooperative OFDMA networks. IEEE Trans Wirel Commun, 2013, 12: 1138–1148

    Article  Google Scholar 

  10. Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems-Part I: chunk allocation. IEEE Trans Commun, 2009, 57: 2734–2744

    Article  Google Scholar 

  11. Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems-Part II: joint chunk, power and bit allocation. IEEE Trans Commun, 2012, 60: 499–509

    Article  Google Scholar 

  12. R1-104661. Comparison of Time-Domain eICIC solutions. 3GPP Std, Madrid, 2012

    Google Scholar 

  13. Pedersen K I, Wang Y Y, Strzyz S, et al. Enhanced inter-cell interference coordination in co-channel multi-layer LTE-advanced networks. IEEE Wirel Commun, 2013, 20: 120–127

    Article  Google Scholar 

  14. Barbieri A, Damnjanovic A, Ji T F, et al. LTE femtocells: system design and performance analysis. IEEE J Sel Area Comm, 2012, 30: 586–594

    Article  Google Scholar 

  15. Li Q, Hu R Q, Xu Y R, et al. Optimal fractional frequency reuse and power control in the heterogeneous wireless networks. IEEE Trans Wirel Commun, 2013, 12: 2658–2668

    Article  Google Scholar 

  16. 3GPP TR 36.814. Technical Specification Group Radio Access Network. Further Advancements for E-UTRA Physical Layer Aspects. 3GPP Technical Report (Release 9). 2010

    Google Scholar 

  17. Amirijoo M, Frenger P, Gunnarsson F, et al. Neighbor cell relation list and physical cell identity self-organization in LTE. In: Proceedings of IEEE ICC Wkshps, Beijing, 2008. 37–41

    Google Scholar 

  18. Liang Y S, Chung W H, Ni G K, et al. Resource allocation with interference avoidance in OFDMA femtocell networks. IEEE Trans Veh Technol, 2012, 61: 2243–2255

    Article  Google Scholar 

  19. Bladsjo D, Hogan M, Ruffini S. Synchronization aspects in LTE small cells. IEEE Commun Mag, 2013, 51: 70–77

    Article  Google Scholar 

  20. R1-101369. Considerations on Interference Coordination in Heterogeneous Networks. 3GPP Std, San Francisco, 2010

    Google Scholar 

  21. Sternad M, Grieger M, Apelfrojd R, et al. Using predictor antennas for long-range prediction of fast fading for moving relays. In: Proceedings of IEEE WCNC Wkshps, Paris, 2012. 253–257

    Google Scholar 

  22. Zaki A N, Fapojuwo A O. Optimal and efficient graph-based resource allocation algorithms for multiservice frame-based OFDMA networks. IEEE Trans Mobile Comput, 2011, 10: 1175–1186

    Article  Google Scholar 

  23. Orlin J B. A polynomial time primal network simplex algorithm for minimum cost flows. Math Program, 1997, 78: 109–129

    MATH  MathSciNet  Google Scholar 

  24. Boyd S P, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Li, J., Zhao, L. et al. Interference management for rate-constrained moving relay node in a heterogeneous network. Sci. China Inf. Sci. 57, 1–12 (2014). https://doi.org/10.1007/s11432-014-5105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5105-9

Keywords

关键词

Navigation