Skip to main content
Log in

Optical quantum router with cross-phase modulation

基于交叉相位调制技术的光学量子路由器

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The quantum router is a key part of a quantum network. How to design a fully quantum router is a dominant theme in the area of quantum communication. Based on the cross-phase modulation technique, we propose a scheme to realize an optical quantum router using the c-path operation for its basic operation. This router is a perfect, fully quantum router, and it is available for arbitrary (separated or entangled) input signals and covers all possible control modes (the general n-control-m mode). Moreover, this router protects target signals and preserves quantum features, such as coherent superposition and entanglement. This is a new and powerful feature when compared with classical routers. With the development of current experimental technology, our scheme is feasible.

概要

创新点

量子路由器是量子网络的核心部件, 我们基于光学交叉相位调制技术提出全量子路由器的设计方案. 这一路由器适用于任意的输入量子态(包括可分态、 纠缠态)和所有可能的控制模式(例如n-控制-m模式), 并且不会破坏目标信号, 可以保持其量子特性, 例如相干叠加性、 纠缠等. 因而这是一个完美的全量子路由器, 相比经典路由器, 展现出新的、 功能更强大的特性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–196

    Article  Google Scholar 

  3. Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81: 1301–1350

    Article  Google Scholar 

  4. Dai W C, Lu Y, Zhu J, et al. An integrated quantum secure communication system. Sci China Inf Sci, 2011, 54: 2578–2591

    Article  MathSciNet  Google Scholar 

  5. Liu Z H, Chen H W, Liu W J, et al. Deterministic secure quantum communication without unitary operation based on highdimensional entanglement swapping. Sci China Inf Sci, 2012, 55: 360–367

    Article  MathSciNet  Google Scholar 

  6. Jin W, Zheng L M, Wang F Q, et al. The influence of stochastic dispersion on quantum key distribution system. Sci China Inf Sci, 2013, 56: 092304

    Article  Google Scholar 

  7. Wang J, Cui K, Luo C L, et al. Design of a high-repetition rate photon source in a quantum key distribution system. Sci China Inf Sci, 2013, 56: 092305

    Google Scholar 

  8. Kimble H J. The quantum internet. Nature (London), 2008, 453: 1023–1030

    Article  Google Scholar 

  9. Harris S E, Yamamoto Y. Photon switching by quantum interference. Phys Rev Lett, 1998, 81: 3611–3614

    Article  Google Scholar 

  10. Mücke M, Figueroa E, Bochmann J, et al. Electromagnetically induced transparency with single atoms in a cavity. Nature (London), 2010, 465: 755–758

    Article  Google Scholar 

  11. Tanji-Suzuki H, Chen W, Landig R, et al. Vacuum-induced transparency. Science, 2011, 333: 1266–1269

    Article  Google Scholar 

  12. Zhou L, Gong Z R, Liu Y X, et al. Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys Rev Lett, 2008, 101: 100501

    Article  Google Scholar 

  13. Bermel P, Rodriguez A, Johnson S G, et al. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys Rev A, 2006, 74: 043818

    Article  Google Scholar 

  14. Longo P, Schmitteckert P, Busch K. Few-photon transport in low-dimensional systems: Interaction-induced radiation trapping. Phys Rev Lett, 2010, 104: 023602

    Article  Google Scholar 

  15. Sandlu S, Povinelli M L, Fan S. Enhancing optical switching with coherent control. Appl Phys Lett, 2010, 96: 231108

    Article  Google Scholar 

  16. Chang D E, Sorensen A S, Demler E A, et al. A single-photon transistor using nanoscale surface plasmons. Nat Phys, 2007, 3: 807–812

    Article  Google Scholar 

  17. Agarwal G S, Huang S M. Optomechanical systems as single-photon routers. Phys Rev A, 2012, 85: R021801

    Google Scholar 

  18. Lemr K, Černoch A. Linear-optical programmable quantum router. Opt Commun, 2013, 300: 282–285

    Article  Google Scholar 

  19. Lemr K, Bartkiewicz K, Černoch A, et al. Resource-efficient linear-optical quantum router. Phys Rev A, 2013, 87: 062333

    Article  Google Scholar 

  20. Lin Q, Li J. Quantum control gates with weak cross-Kerr nonlinearity. Phys Rev A, 2009, 79: 022301

    Article  Google Scholar 

  21. Lin Q, He B. Single-photon logic gates using minimal resources. Phys Rev A, 2009, 80: 042310

    Article  Google Scholar 

  22. Lin Q, He B, Ren Y H, et al. Processing multiphoton states through operation on a single photon: Methods and applications. Phys Rev A, 2009, 80: 042311

    Article  Google Scholar 

  23. Lin Q, He B. Highly efficient processing multi-photon states. arXiv: 1407. 5435

  24. Zhou X Q, Ralph T C, Kalasuwan P, et al. Adding control to arbitrary unknown quantum operations. Nat Commun, 2011, 2: 413

    Article  Google Scholar 

  25. Wang X W, Zhang D Y, Tang S Q, et al. Photonic two-qubit parity gate with tiny crossKerr nonlinearity. Phys Rev A, 2012, 85: 052326

    Article  Google Scholar 

  26. Barrett S D, Kok P, Nemoto K, et al. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys Rev A, 2005, 71: R060302

    Google Scholar 

  27. Nemoto K, Munro W J. Nearly deterministic linear optical controlled-NOT gate. Phys Rev Lett, 2004, 93: 250502

    Article  Google Scholar 

  28. Munro W J, Nemoto K, Spiller T P, et al. Efficient optical quantum information processing. J Opt B: Quantum Semiclass Opt, 2005, 7: S135

    Article  Google Scholar 

  29. Munro W J, Nemoto K, Spiller T P. Weak nonlinearities: A new route to optical quantum computation. New J Phys, 2005, 7: 137

    Article  Google Scholar 

  30. Spiller T P, Nemoto L, Braunstein S L, et al. Quantum computation by communication. New J Phys, 2006, 8: 30

    Article  Google Scholar 

  31. van Loock P, Munro W J, Nemoto K, et al. Hybrid quantum computation in quantum optics. Phys Rev A, 2008, 78: 022303

    Article  Google Scholar 

  32. He B, Nadeem M, Bergou J A. Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys Rev A, 2009, 79: 035802

    Article  Google Scholar 

  33. He B, Ren Y H, Bergou J A. Creation of high-quality long-distance entanglement with flexible resources. Phys Rev A, 2009, 79: 052323

    Article  Google Scholar 

  34. Sheng Y B, Deng F G, Zhou H Y. Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys Rev A, 2008, 77: 042308

    Article  Google Scholar 

  35. Sheng Y B, Deng F G, Zhou H Y. Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys Rev A, 2008, 77: 062325

    Article  Google Scholar 

  36. Sheng Y B, Deng F G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys Rev A, 2010, 81: 032307

    Article  Google Scholar 

  37. Sheng Y B, Zhou L, Zhao S M, et al. Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys Rev A, 2012, 85: 012307

    Article  Google Scholar 

  38. Jeong H. Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys Rev A, 2005, 72: 034305

    Article  Google Scholar 

  39. Jeong H. Quantum computation using weak nonlinearities: Robustness against decoherence. Phys Rev A, 2006, 73: 052320

    Article  Google Scholar 

  40. Barrett S D, Milburn G J. Quantum-information processing via a lossy bus. Phys Rev A, 2006, 74: R060302

    Article  Google Scholar 

  41. Louis S G R, Munro W J, Spiller T P, et al. Loss in hybrid qubit-bus couplings and gates. Phys Rev A, 2008, 78: 022326

    Article  Google Scholar 

  42. He B, Lin Q, Simon C. Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys Rev A, 2011, 83: 053826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YeWang Chen or Qing Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lin, Q. Optical quantum router with cross-phase modulation. Sci. China Inf. Sci. 57, 1–11 (2014). https://doi.org/10.1007/s11432-014-5217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5217-2

Keywords

关键词

Navigation