Skip to main content
Log in

A Q-band CMOS LNA exploiting transformer feedback and noise-cancelling

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, a Q-band CMOS low noise amplifier (LNA) exploiting transformer positive-negative feedback and noise cancelling is presented. The proposed low noise amplifier consists of a positive transformer feedback to achieve noise-reduction and a negative transformer feedback to obtain high reverse isolation and stability. The noise cancellation technique is applied in this LNA to achieve a low noise figure. This LNA has been fabricated by standard commercial 90 nm CMOS. According to measurements, this proposed LNA achieves a peak gain of 11.5 dB, a noise figure of 6.5 dB and an input P1dB of −12 dBm. It consumes 11.5 mA from a 1.2 V supply occupying the area of 0.6×0.7 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Razavi B. A 60-GHz direct-conversion CMOS receiver. In: Proceeding of IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech Papers, San Francisco, 2005. 400–401

    Google Scholar 

  2. Tsai J H, Chen W C, Wang T P, et al. A miniature Q-band low noise amplifier using 0.13 μm CMOS technology. IEEE Microw. Wireless Compin. Lett, 2006, 16: 327–329

    Article  Google Scholar 

  3. Varonnen M, Karkkainen M, Kantanen M, et al. Millimeter-wave integrated circuits in 65-nm CMOS. IEEE J Solid-State Circuit, 2008, 43: 1991–2002

    Article  Google Scholar 

  4. Vitzilaios G, Papananos Y, Theodoratos G. A 1-V 5-GHz CMOS multiple magnetic feedback receiver front-end. IEEE Trans Microw Theory Tech, 2008, 56: 1338–1348

    Article  Google Scholar 

  5. Masud M A, Zirath H, Ferndahl M, et al. 90 nm CMOS MMIC amplifier. In: Proceeding of IEEE RFIC Symp. Dig, Phoenix, 2004. 201–204

    Google Scholar 

  6. Doan C H, Emami S, Niknejad A M, et al. Millimeter-wave CMOS design. IEEE J Solid-State Circuit, 2005, 40: 144–155

    Article  Google Scholar 

  7. Shigematsu H, Hirose T, Brewer F, et al. Millimeter-wave CMOS circuit design. IEEE Trans Microw Theory Tech, 2005, 52: 472–477

    Article  Google Scholar 

  8. Razavi B. Design of millimeter-wave CMOS radios: A tutorial. IEEE Trans Circuit Syst I, 2009, 56: 4–16

    Article  MathSciNet  Google Scholar 

  9. Kang K, Lin F, Pham D D, et al. A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS. IEEE J Solid-State Circuit, 2010, 45: 1720–1731

    Article  Google Scholar 

  10. Li C H, Kuo C N, Kuo M C. A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18 μm CMOS. IEEE Trans Microw Theory Tech, 2012, 60: 3502–3511

    Article  Google Scholar 

  11. Okada K, Matsushita K, Bunsen K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct conversion transceiver for IEEE 802.15.3c. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2011. 160–162

    Google Scholar 

  12. Kan L L L, Lau D M C, Lou S, et al. A 1-V 86-mW-RX 53-mW-TX single-chip CMOS transceiver for WLAN IEEE 802.11a. IEEE J Solid-State Circuit, 2007, 42: 1986–1998

    Article  Google Scholar 

  13. Zhang X, Pei W H, Huang B J, et al. A low-noise fully-differential CMOS preamplifier for neural recording applications. Sci China Infor Sci, 2012, 55: 441–452

    Article  MathSciNet  Google Scholar 

  14. Chen Y M, Zhu L, Zhang L, et al. Four-channel, 40 Gb/s front-end amplifier for parallel optical receiver in 0.18 μm CMOS. Sci China Infor Sci, 2013, 56: 042402(1)–042402(7)

    MathSciNet  Google Scholar 

  15. Li X Y, Shekhar S, Allstot D J. Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS. IEEE J Solid-State Circuit, 2005, 40: 2609–2619

    Article  Google Scholar 

  16. Zhuo W, Shekhar X L S, Embabi S H K, et al. A capacitor cross-coupled common-gate low-noise amplifier. IEEE Trans Circuit Syst II, 2005, 52: 875–879

    Article  Google Scholar 

  17. Bruccoleri F, Klumperink E A M, Nauta B. Wide-band CMOS low noise amplifer exploiting thermal noise canceling. IEEE J Solid-State Circuit, 2004, 39: 275–281

    Article  Google Scholar 

  18. Bruccoleri F, Klumperink E A M, Nauta B. Noise cancelling in wideband CMOS LNAs. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2002. 406–407

    Google Scholar 

  19. Chen W H, Liu G, Zdravko B, et al. A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J Solid-State Circuit, 2008, 43: 1164–1176

    Article  Google Scholar 

  20. Wang H, Zhang L, Yu Z. A wideband inductorless LNA with local feedback and noise cancelling for low-power lowvoltage applications. IEEE Trans Circuit Syst I, 2010, 57: 1993–2005

    Article  MathSciNet  Google Scholar 

  21. Liao C F, L S. A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers. IEEE J Solid-State Circuit, 2007, 42: 329–339

    Article  Google Scholar 

  22. Sobhy E A, Helmy A A, Hoyos S, et al. A 2.8-mW sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback. IEEE Trans Microw Theory Tech, 2005, 59: 3154–3161

    Article  Google Scholar 

  23. Cassan D J, Long J R. A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS. IEEE J Solid-State Circuit, 2003, 38: 427–435

    Article  Google Scholar 

  24. Sakian P, Janssen E, Roermund A H M, et al. Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA. IEEE Trans Microw Theory Tech, 2012, 60: 702–713

    Article  Google Scholar 

  25. Long J R. Monolithic transformers for silicon RF IC design. IEEE J Solid-State Circuit, 2000, 35: 1368–1382

    Article  Google Scholar 

  26. Woo S, Kim W, Kim C L H, et al. A wideband low-power CMOS LNA with positive-negative feedback for noise, gain and linearity optimization. IEEE Trans Microw Theory Tech, 2012, 60: 3169–3178

    Article  Google Scholar 

  27. Shigematsu H, Hirose T, Brewer F, et al. Millimeter-wave CMOS circuit design. IEEE Trans Microw Theory Tech, 2005, 52: 472–477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Jiang, Z., Yi, K. et al. A Q-band CMOS LNA exploiting transformer feedback and noise-cancelling. Sci. China Inf. Sci. 58, 1–10 (2015). https://doi.org/10.1007/s11432-014-5249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5249-7

Keywords

Navigation