Skip to main content
Log in

System distortion analysis and compensation of DIFS signals for wideband imaging radar

宽带成像雷达中直接中频采集信号系统失真分析和补偿

  • Research Paper
  • Special Focus on High-Speed Signal Processing
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

System distortion is inevitable in wideband imaging radar, which needs to be compensated precisely. In traditional wideband imaging radar for space surveillance, a linear frequency modulation signal is transmitted and the echoed signal is received with dechirping processing. In this case, the system distortion changes with the target range, making it hard to compensate the distortion. However, the direct intermediate frequency sampling (DIFS) signal maintains the complete system distortion and avoids the range variant distortion in the dechirped signal. Therefore, it is more convenient to perform system compensation in DIFS signal. In this paper, the distortion factors affecting the wideband radar systems are introduced. Then, the influence of the amplitude phase distortion on the focusing quality is analyzed in detail. Finally, a system compensation method in the frequency domain based on least squares estimation is proposed. In the proposed method, the compensation vectors are extracted from the calibration tower echoes for DIFS compensation. Inverse synthetic aperture radar imagery of targets can be achieved with improved focus quality. Simulations and real-data experiments confirm the effectiveness of the proposal.

摘要

创新点

本文针对宽带成像雷达系统, 详细分析了系统失真对采用直接中频采集信号进行宽带成像的影响, 并且提出了一种频域的系统失真补偿算法。 由于传统宽带成像雷达中去斜接收方式的移变性, 使得对去斜数据开展系统失真补偿十分困难, 而采用直接中频采集方式能很好地解决移变性影响。 本文首先介绍了直接中频采集信号中的系统失真影响环节, 然后详细分析了宽带雷达系统幅相失真对直采信号成像性能的影响, 最后提出了一种基于最小二乘估计的频域均衡的系统幅相失真校正方法。 文章通过仿真和实测数据, 验证了文中的分析过程和所提算法的正确性和有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mensa D L. High Resolution Radar Imaging. Dedham: Artech House, 1981. 10–15

    Google Scholar 

  2. Xu J, Xia X G, Peng S B, et al. Radar maneuvering target motion estimation based on generalized radon-Fourier transform. IEEE Trans Signal Process. 2012, 60: 6190–6201

    Article  MathSciNet  Google Scholar 

  3. Rao W, Li G, Wang X Q, et al. Comparison of parametric sparse recovery methods for ISAR image formation. Sci China Inf Sci, 2014, 57: 022315

    Article  Google Scholar 

  4. Chen C C, Andrews H C. Target motion induced radar imaging. IEEE Trans Aerosp Electron Syst, 1980, 16: 2–14

    Article  Google Scholar 

  5. Park S H, Joo M G, Kim K T. Construction of ISAR training database for automatic target recognition. J Electromagnet Waves Appl, 2011, 25: 1493–1503

    Article  Google Scholar 

  6. Park S H, Lee J H, Kim K T. Performance analysis of the scenario-based construction method for real target ISAR recognition. Prog Electromagn Res, 2012, 128: 137–151

    Article  Google Scholar 

  7. Felguera-Martin D, Gonzalez-Partida J T, Burgos-Garcia M. Interferometric ISAR imaging on maritime target applications: simulation of realistic targets and dynamics. Prog Electromagn Res, 2012, 132: 571–586

    Article  Google Scholar 

  8. Caputi W J. Stretch: a time-transformation technique. IEEE Trans Aerosp Electron Syst, 1971, 7: 269–278

    Article  Google Scholar 

  9. Bao Z, Xing M D, Wang T. Radar Imaging Technology. Beijing: Publishing House of Electronics Industry, 2005. 125–129

    Google Scholar 

  10. Zhang Z, Zhang B C, Jiang C L, et al. Influence factors of sparse microwave imaging radar system performance: approaches to waveform design and platform motion analysis. Sci China Inf Sci, 2012, 55: 2301–2317

    Article  MATH  MathSciNet  Google Scholar 

  11. De Witt J J, Nel W A J. Range Doppler dynamic range considerations for dechirp on receive radar. In: Proceeding of 5th European Radar Conference, Amsterdam, 2008. 136–139

    Google Scholar 

  12. Jin S, Gao M G, Deng Y L. Wideband measurement technique based on dechirp processing for radar (in Chinese). Mod Radar, 2008, 30: 82–85

    Google Scholar 

  13. Jiao W, Liang X D, Ding C B. Extraction and correction of SAR amplitude and phase errors based on internal calibration signal (in Chinese). J Electron Inf Technol, 2005, 27: 1883–1886

    Google Scholar 

  14. Zhou J. ISAR system compensation algorithm based on distortion estimation (in Chinese). Mod Radar, 2004, 26: 8–11

    Google Scholar 

  15. Liu G Y, Hu X C, Lin Y Q. Impact of channel difference on SAR image quality (in Chinese). Mod Radar, 2004, 31: 42–45

    Google Scholar 

  16. Luo Y, Zhang Q, Hong W, et al. Waveform design and high-resolution imaging of cognitive radar based on compressive sensing. Sci China Inf Sci, 2012, 55: 2590–2603

    Article  MATH  MathSciNet  Google Scholar 

  17. Develet J A. The influence of random phase errors on the angular resolution of synthetic aperture radar systems. IEEE Trans Aerosp Navig Electron, 1964, ANE-11: 58–65

    Article  Google Scholar 

  18. Lin Q Q, Tang P F, Yuan B, et al. A new method for wideband radar direct IF sampling signal. In: Proceedings of the International Conference on Signal Processing, Beijing, 2012. 1920–1924

    Google Scholar 

  19. Lin Q Q, Chen Z P, Zhang Y, et al. Coherent phase compensation method based on direct IF sampling in wideband radar. Prog Electromagn Res, 2013, 136: 753–764

    Article  Google Scholar 

  20. Lin Q Q, Tang P F, Chen Z P. Design and implementation of direct IF sampling and high-speed storage system for wideband radar (in Chinese). J Radar, 2012, 1: 283–291

    Article  Google Scholar 

  21. Serioja O T, Emilia M, Gailon B, et al. Ka-band direct digital receiver. IEEE Trans Microwave Theory Tech, 2002, 50: 2436–2442

    Article  Google Scholar 

  22. Yang W J, Xu Y, Wang F, et al. Compensation signal extraction for wideband radar system distortion (in Chinese). Mod Radar, 2006, 28: 8–11

    Google Scholar 

  23. Zhang Y, Bao Q L, Yang J, et al. Design and implementation of channel equalization method for wideband digital array radar (in Chinese). Signal Process, 2010, 26: 453–457

    Google Scholar 

  24. Wen S L, Yuan Q, Qin Z Y. Error acquisition and compensation for wide linear frequency modulated signal Stretch processing (in Chinese). Syst Eng Electron, 2005, 27: 36–40

    Google Scholar 

  25. Lu B Y, Liang D N. Effects of FM linearity on the performance of LFM signals (in Chinese). Syst Eng Electron, 2005, 27: 1384–1386

    Google Scholar 

  26. Curlander J C, Mcdonough R N. Synthetic Aperture Radar: System and Signal Precessing. New York: John Wiley & Sons, 1991. 127–141

    Google Scholar 

  27. Wan Y L, Si Q, Wang X G. Linearity measurement method for ultra-wideband linear frequency modulated signal (in Chinese). J Electron Meas Instrum, 2007, 21: 55–58

    Google Scholar 

  28. Xu J, Yu J, Peng Y N, et al. Radon-Fourier transform (RFT) for radar target detection (I): generalized Doppler filter bank. IEEE Trans Aerosp Electron Syst, 2011, 47: 1186–1202

    Article  Google Scholar 

  29. Su S y, Liu W Q, Chen Z P. A high velocity compensation method for wideband direct sampling receiver (in Chinese). J Shenzhen Univ Sci Eng, 2012, 29: 386–391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hou, Q., Xu, S. et al. System distortion analysis and compensation of DIFS signals for wideband imaging radar. Sci. China Inf. Sci. 58, 1–16 (2015). https://doi.org/10.1007/s11432-014-5252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5252-z

Keywords

关键词

Navigation