Skip to main content
Log in

Flip-flops soft error rate evaluation approach considering internal single-event transient

考虑内部 SET的触发器软错误率评估方法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The internal single-event transient (SET) induced upset in flip-flops is becoming significant with the increase of the operating frequency. However, the conventional soft error rate (SER) evaluation approach could only produce an approximate upset prediction result caused by the internal SET. In this paper, we propose an improved SER evaluation approach based on Monte Carlo simulation. A novel SET-based upset model is implemented in the proposed evaluation approach to accurately predict upsets caused by the internal SET. A test chip was fabricated in a commercial 65 nm bulk process to validate the accuracy of the improved SER evaluation approach. The predicted single-event upset cross-sections are consistent with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaspard N J, Jagannathan S, Diggins Z J, et al. Technology scaling comparison of flip-flop heavy-ion single-event upset cross sections. IEEE Trans Nucl Sci, 2013, 60: 4368–4373

    Article  Google Scholar 

  2. Gasiot G, Glorieux M, Clerc S, et al. Experimental soft error rate of several flip-flop designs representative of production chip in 32 nm CMOS technology. IEEE Trans Nucl Sci, 2013, 60: 4226–4231

    Article  Google Scholar 

  3. Jagannathan S, Loveless T D, Bhuva B L, et al. Frequency dependence of alpha-particle induced soft error rates of flip-flops in 40-nm CMOS technology. IEEE Trans Nucl Sci, 2012, 59: 2796–2802

    Article  Google Scholar 

  4. Mahatme N N, Gaspard N J, Jagannathan S, et al. Impact of supply voltage and frequency on the soft error rate of logic circuits. IEEE Trans Nucl Sci, 2013, 60: 4200–4206

    Article  Google Scholar 

  5. Tang H, Cannon E. SEMM-2: a modeling system for single event upset analysis. IEEE Trans Nucl Sci, 2004, 51: 3342–3348

    Article  Google Scholar 

  6. Weller R A, Mendenhall M H, Reed R A, et al. Monte Carlo Simulation of single event effects. IEEE Trans Nucl Sci, 2010, 57: 1726–1746

    Article  Google Scholar 

  7. Hubert G, Duzellier S, Bezerra F, et al. Operational SER calculations on the SAC-C orbit using the multi-scales single event phenomena predictive platform (MUSCA SEP3). IEEE Trans Nucl Sci, 2009, 56: 3032–3042

    Article  Google Scholar 

  8. Abe S I, Watanabe Y, Shibano N, et al. Multi-scale Monte Carlo simulation of soft errors using PHITS-HyENEXSS code system. IEEE Trans Nucl Sci, 2012, 59: 2796–2802

    Article  Google Scholar 

  9. Kevin MW, Brian D S, Robert A R, et al. Monte-Carlo based on-orbit single event upset rate prediction for a radiation hardened by design latch. IEEE Trans Nucl Sci, 2007, 54: 2419–2425

    Article  Google Scholar 

  10. Warren K M, Sternberg A L, Black J D, et al. Heavy ion testing and single event upset rate prediction considerations for a DICE flip-flop. IEEE Trans Nucl Sci, 2009, 56: 3130–3137

    Article  Google Scholar 

  11. Kevin M W, Andrew L S, Robert A W, et al. Integrating circuit level simulation and Monte-Carlo radiation transport code for single event upset analysis in SEU hardened circuitry. IEEE Trans Nucl Sci, 2008, 55: 2886–2894

    Article  Google Scholar 

  12. Du Y K, Chen S M, Liu B W, et al. Effect of P-well contact on N-well potential modulation in a 90nm bulk technology. Sci China Tech Sci, 2012, 55: 1001–1006

    Article  Google Scholar 

  13. Atkinson N M, Ahlbin J R, Witulski A F, et al. Effect of transistor density and charge sharing on single-event transients in 90-nm bulk CMOS. IEEE Trans Nucl Sci, 2011, 58: 2578–2584

    Article  Google Scholar 

  14. Chen J J, Chen S M, He Y B, et al. Novel layout technique for N-hit single-event transient mitigation via sourceextension. IEEE Trans Nucl Sci, 2012, 59: 2859–2866

    Article  Google Scholar 

  15. He Y B, Chen S M, Chen J J, et al. Impact of circuit placement on single event transients in 65 nm bulk CMOS technology. IEEE Trans Nucl Sci, 2012, 59: 2772–2777

    Article  Google Scholar 

  16. Chen S M, Du Y K, Liu BW, et al. Calculating the soft error vulnerabilities of combinational circuits by re-considering the sensitive area. IEEE Trans Nucl Sci, 2014, 61: 646–653

    Article  Google Scholar 

  17. Qin J R, Chen S M, Liu B W, et al. Device-physics-based analytical model for SET pulse in sub-100 nm bulk CMOS process. Sci China Inf Sci, 2012, 55: 1461–1468

    Article  Google Scholar 

  18. Du Y K, Chen S M, Liu B W. A constrained layout placement approach to enhance pulse quenching effect in large combinational circuits. IEEE Trans Dev Mater Rel, 2014, 14: 268–274

    Article  Google Scholar 

  19. Warren K M, Sierawski B D, Weller R A, et al. Predicting thermal neutron-induced soft errors in static memories using tcad and physics-based monte carlo simulation tools. IEEE Electron Dev Lett, 2007, 28: 180–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuMing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, R., Chen, S., He, Y. et al. Flip-flops soft error rate evaluation approach considering internal single-event transient. Sci. China Inf. Sci. 58, 1–12 (2015). https://doi.org/10.1007/s11432-014-5260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5260-z

Keywords

Navigation