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Abstract—It has been shown that analog-to-information con- 

version (AIC) is an efficient scheme to perform sub-Nyquist 
sampling of pulsed radar echoes. However, it is often impractical, 
if not infeasible, to reconstruct full-range Nyquist samples 
because of huge storage and computational load requirements. 
Based on the analyses of AIC measurement system, this paper 
develops a novel segment-sliding reconstruction (SegSR) scheme 
to effectively reconstruct the Nyquist samples. The SegSR per- 
forms segment-by-segment reconstruction in a sliding mode and 
can be implemented in real-time. An important characteristic that 
distinguish the proposed SegSR from the existing methods is that 
the measurement matrix in each segment satisfies the restricted 
isometry property (RIP) condition. Partial support in the previous 
segment can be incorporated into the estimation of the Nyquist 
samples in the current segment. The effect of interference intro- 
duced from adjacent segments is theoretically analyzed, and it is 
revealed that the interference consists of two interference levels 
having different impacts to the signal reconstruction performance. 
With these observations, a two-step orthogonal matching pursuit 
(OMP) procedure is proposed for segment reconstruction, which 
takes into account different interference levels and partially 
known support of the previous segment. The proposed SegSR 
achieves nearly optimal reconstruction performance with a signi- 
ficant reduction of computational loads and storage requirements. 
Theoretical analyses and simulations verify its effectiveness. 
 

Index Terms—compressed sensing, analog-to-information 
conversion, OMP, segment-sliding reconstruction.  

I. INTRODUCTION 

 pulsed radar usually transmits modulated pulses during 
the transmit time and receives during the receive time any 

echo signals reflected from illuminated targets. The received 
echoes are sampled and processed to extract target information. 
To avoid loss of information, the Nyquist sampling theorem 
requires the sampling rate to be higher than twice the radar 
signal bandwidth. Many applications require the radar systems 
to employ wideband signals in order to achieve a fine range 
resolution. In such a situation, the large bandwidth mandates 
the use of high-rate analog-to-digital converter (ADC) and thus 
yields a large volume of sampled data which become highly 
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demanding in the subsequent stages in terms of both storage 
and processing capabilities. The requirement for the ADC 
devices to operate in the Nyquist sampling rate has become a 
serious bottleneck in the development of wideband and ultra- 
wideband radar systems. 

The recent advances of compressive sampling (CS) [1]-[4], 
or compressive sensing, open a new avenue to achieve data 
acquisition with a significantly reduced sampling rate. The CS 
theory exploits the sparsity of signals and samples them in a 
rate that is close to their information rate rather than their 
bandwidth. With a high probability, CS techniques can recover 
sparse signals from far fewer samples or measurements than 
those that are determined by the Nyquist sampling theorem. In 
this case, the required sampling rate is reduced, leading to a 
simplified ADC configuration. A number of schemes have been 
proposed to implement the CS or analog-to-information con- 
version (AIC) of analog signals, such as random demodulation 
(RD) [5], [6], segmented compressed sampling [7], random 
modulator pre-integrator (RMPI) [8], Xampling [9], and quad- 
rature compressed sensing (QuadCS) [10], [11]. Theoretical 
analyses and experimental studies have shown that these AIC 
systems are efficient for low-rate (sub-Nyquist) acquisition of 
sparse signals with a large bandwidth. 

The AIC system have attracted wide attention for radar 
signal acquisition and processing [12]-[16]. Reference [12] 
reports an RMPI-based radar pulse receiver in which the target 
information is extracted without reconstructing the full Nyquist 
samples. The QuadCS-based pulse-Doppler processing in [13] 
reconstructs target information from in-phase and quadrature 
sub-Nyquist samples. A Doppler-focusing approach based on 
the Xampling system is developed in [14]. Reference [15] 
proposes an adaptive compressive sensing and processing 
method for radar tracking. More references can be found, e.g., 
in a recent workshop on CS radar [16]. 

In many cases, we desire to recover the Nyquist samples of 
radar echoes from the low-rate outputs of AIC systems. In CS 
theory, the problem refers to sparse signal recovery or recons- 
truction, which is often mathematically expressed as 

 0
min

s.t . ,




 
σ

y Φ σA

σ

Ψσ
 (1) 

where 
0

σ  denotes the 0 -norm of σ  which counts for the 
number of nonzero entries, i.e., the sparsity, of the 1N   sparse 
coefficient vector σ , y  is an 1M   measurement vector, Φ  is 
an M N  observation matrix with M N , Ψ  is an N N  
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basis matrix, and A ΦΨ  is the yielding M N  measurement 
matrix. The sparsity of σ  is denoted as

0
Kσ . It has been 

shown that the sparse vector σ  can be exactly reconstructed by 
solving (1), if matrix A  satisfies the restricted isometry 
property (RIP) condition [3], [4],  

    2 2 2

2 2 2
1 1 ,K K    σ A σσ  (2) 

where K  is a sufficiently small RIP constant. Unfortunately, 
problem (1) is a combinatorial NP-complete problem and 
computationally intractable [17]. In practice, therefore, the 

0 -norm used in (1) is often replaced by the 1 -norm, yielding 
the following convex optimization problem, 

 1
min

s.t . .




 
σ

y Φ σA

σ

Ψσ
 (3) 

There are a wide variety of approaches to solve (3), including 
the greedy iteration algorithms [18], [19], convex optimization 
algorithms [20], [21] and Bayesian CS [21], [23] (see [24] for a 
review). All these techniques are suitable when the measure- 
ment matrix is of a moderate size. For large-scale measurement, 
on the other hand, we need to allocate a prohibitively huge size 
of memory space to store the data, as such, the recovery may 
become impractical for the state-of-the-art computers. Consider, 
for example, a radar system with a signal bandwidth of 
100MHz , a pulse width of 10 s , and a receiving time of 
2490 s . At one-fifth of the Nyquist sampling rate, we need to 
store about 101.24 10  elements with 49800  rows and 248000  
columns, occupying about 92GB of memory using the standard 
IEEE double precision. As a result, the full-range reconstruc- 
tion is impractical, if not infeasible, with the state-of-the-art 
hardware capabilities.  

Motivated by such facts, this paper studies implementable, 
full range reconstruction of pulsed radar echoes sampled by an 
RD AIC system. The results can be easily extended to other 
sparse sampling schemes likes RMPI, QuadCS and Xampling 
that generate similar measurement matrices.  

For the RD AIC system, as will be discussed in Section III, 
its measurement matrix A  with the waveform-matched dic- 
tionary [25] is sparse with its effective elements around the 
diagonal and there are overlaps between the rows, as shown in 
Fig. 1. With this specific matrix structure, we can decompose 
the large-scale reconstruction problem (3) into a series of small- 
scale ones by properly segmenting the measurement vector and 
the sparse vector. The word “properly” implies that the seg- 
mentations are made such that each segmented measurement 
matrix satisfies the RIP conditions. In this case, the entire 
sparse vector σ  can be reconstructed segment by segment.  

It is important to note that, because matrix A  is not block- 
diagonal, the reconstruction of a segment will be interfered by 
the adjacent segments. The interference is referred to as virtual 
noise in this paper and is factorized into forward virtual noise 
and backward virtual noise. The forward virtual noise is 
generated by the inaccurate estimate of the sparse vector in the 
previous segment, whereas the backward one is formulated by 
partial measurement in the subsequent segment. We theore- 
tically analyze the effects of the virtual noise on reconstructed 
positions and amplitudes of the sparse entries in current 
segment. It is revealed that the virtual noise has different levels 

of distributions for different measurements, and the effect of 
the backward virtual noise is much higher than that of the 
forward one. 

To perform efficient estimation of sparse echoes in each 
segment, we develop a two-step OMP process (TOMPP) 
algorithm which takes into account the effects of these two 
kinds of virtual noises and partially known support in the 
previous segment estimate. In the proposed approach, we take 
the segment-sliding way to segment both the measurement 
vector and the sparse vector. As a result, the overall complexity 
is reduced, and the full-range reconstruction of the pulsed radar 
echoes can be implemented in real time. Theoretical analyses 
and simulation results validate the effectiveness of the 
proposed segment estimation. When the background noise is 
Gaussian, the proposed scheme achieves nearly optimal 
reconstruction performance with significant reduction of 
computational loads and storage requirements. 

The problem studied in this paper is in essence a reconstruc- 
tion of sparse time-varying signals from streaming measure- 
ments, which have been discussed in [26]-[30]. These algori- 
thms fully exploit the measurement systems and perform 
sliding estimation of the sparse coefficients. The methods in 
[26], [27] use a sliding window for data processing and entail 
recursive sampling and iterative recovery. In each sliding 
sampling, the measurement matrix is recursively generated by 
permuting the previous measurement matrix. The measurement 
matrix in each sampling always satisfies the RIP condition if 
the original one satisfies. The method in [28] focuses on the 
measurement of infinite-dimensional signals using a finite- 
length, time-varying linear system. The compressive measure- 
ment over a finite-length window is closely linked with a 
segment of the infinite-dimensional signal. Then the signal 
recovery can be implemented iteratively over sliding intervals. 
Similar idea is taken in [29] with special lapped orthogonal 
transform bases. Reference [30] studies the large-scale 
reconstruction problem arising from radar imaging, and an 
interesting segmentation approach is presented.  

There are two important issues that are not properly 
addressed in [28]-[30]. First, because matrix A  is not block- 
diagonal, the reconstruction of a segment will be interfered by 
the adjacent segments. The effect of such interference, however, 
has not been properly studied and analyzed. Second, the exist- 
ing approaches do not guarantee the RIP conditions to be 
satisfied after the segmentation, even when the original pro- 
blem satisfies the RIP condition. With different segmentation 
and thorough theoretical analyses, our works well solve above 
problems. Our main contributions include: (a) We develop a 
new segmentation-based algorithm in which all the measure- 
ment sub-matrices satisfy the RIP condition; (b) We provide a 
theoretical analysis of the effect of the interferences and reveal 
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Fig. 1.  The structure of measurement matrix. 



 3

the interference structure consisting of two interference noise 
levels; and (c) Based on the above results, a new OMP 
algorithm, TOMPP, is exploited for segment reconstruction, 
which takes into account the impacts of different noise levels to 
the signal reconstruction performance. The TOMPP algorithm 
achieves almost optimized reconstruction performance. 

The remainder of the paper is organized as follows. In 
Section II, we provide a brief statement of problem model. In 
Section III, we analyze the structure of the measurement matrix 
and explain the mechanism of sliding reconstruction. Section 
IV describes the proposed segment-sliding reconstruction 
algorithm. An analysis of the effect of the interference from 
adjacent segments is provided in Section V. The required 
storage capacity and computational complexity are analyzed in 
Section VI. Numerical results are presented in Section VII. We 
conclude this paper in Section VIII. The proofs of the main 
results are given in the Appendix. 

Notations: Bold letters denote the vectors or matrices.  T  
and  H  represent transposition and conjugate transposition of 
a vector or matrix, respectively.  †  represents the Moore- 
Penrose inverse of a tall, full-rank matrix. 

1
 , 

2
  and 


  

denote the 1 , 2  and   vector or matrix norm, respectively. 
  represents absolute value of a number or cardinality of a set. 

A vector (matrix) with a set as its subscript denotes the 
sub-vector (sub-matrix) containing the elements (columns) of 
the vector (matrix) indexed by the set. 

II. BACKGROUND MATERIALS AND PROBLEM STATEMENT 

A. Signal Model 

Consider a pulsed radar where the baseband signal  s t  has a 
pulse width of pT  and a band width of 2B . Then, for K  non- 
fluctuating point targets, the received echo signal at the base- 
band can be represented as 

      
1

0

, 0, ,
K

k
k

kx t s t t t T




    (4) 

where kt  and k  are the time delay and gain coefficient of the 
k-th target, respectively, and T  refers to the receive time which 
is usually much larger than pT , i.e., pT T . The Nyquist sampl- 
ing of  x t  during the receive interval T  yields at least BT  
samples. For notational simplicity, the background noise is not 
included in the above model, but its effect on the reconstruc- 
tion performance will be examined numerically in Section VII. 

To obtain the sub-Nyquist samples of  x t  to be processed 
by the CS theory,  x t  should be sparse in some domain. In 
radar applications, the transmit waveforms are known in 
advance and the waveform-matched dictionary [25] is often 
adopted. For a radar with baseband signal  x t  of bandwidth 

2B , let 0 1 B   be its Nyquist sampling interval, and 

0N T BT         be the number of Nyquist samples of the 
receiver signals during the receive time T , where    denotes 
the ceiling operation. Then, the waveform-matched dictionary 
consists of all the time-shifted versions of  s t , i.e., 

  0( ) ( ) , 0,1, , 1n nt t s t n n N      at the Nyquist-sampling 
grids   0 00, , , 1N  . In the waveform-matched dictionary, 
the time-delay axis is discretized with resolution 0 . The 
discretization is reasonable, because the time resolution of the 

baseband signal  s t  is limited to 1 B .  
Assume that the target delays are integral multiples of 0 , 

i.e.,   0 00, , , 1kt N   . Given the waveform-matched 
dictionary,  x t  in (4) can be represented as 

      
1

0

,
N

n
n

nx t t t 




  ψ σ  (5) 

where T
0 1 1[ , , , ]N   σ   is the sparse coefficient vector to be 

determined, and        0 1 1, , , Nt t t t      ψ   is a set of 
dictionary waveforms. Note that, there are ( )N K  zero 
coefficients in vector σ for K  targets. As K N ,  x t  is said 
to be K -sparse signal, where the sparsity level K  exactly 
equals the number of the targets. 

B. Compressive Sampling of Radar Echoes 

As introduced in Section I, several AIC systems can be used 
to implement low-rate sampling of the radar echo signals. The 
RD AIC system is well developed and has become the funda- 
mental block of RMPI, QuadCS and Xampling systems. For 
this sake, we take the RD system as an example to illustrate the 
principle of the compressive sampling in this section. 

Fig. 2 shows the basic structure of the RD system. The input 
analog signal  x t  is first mixed by a random-binary signal  
 ( ) 1, , ( 1) , 0,1,2, ,p pp t t k B k B k       (6) 

where .pB B  Signal  p t  is termed as a chipping sequence 
with a chipping rate above the Nyquist rate 01   of the base- 
band signal. The mixed signal passes through a low-pass filter 
to prevent aliasing, and the filtered signal is then sampled. For 
the accumulated low-pass filter, the compressive samples are 
given by 

    int

int( 1)
, 1,2, , ,

mT

m Tmy x t p t dt m M


    (7) 

where 0intT R , and 1R   is an integer referred to as the down 
sampling rate. During the receive time T , we can acquire 

intM T T     low-rate samples, where     denotes the floor 
operation. 

For the waveform-matched dictionary, letting its elements 
pass through the RD system yields 

    int

int1), (
, 1,2, , .

m

m n n

T

m T
t p t dt m Ma 


    (8) 

Combining (5), (7) with (8), we have 

 
0

,

1

, 1, , .
N

n
m n m ny ma M





    (9) 

Define  1 2, , ,
T

My y yy   and 1, 2, ,, , ,
T

n n n M na a a   a  . Then, (9) 
can be represented in matrix form as  

 
1

0

,
N

n n
n






 y a Aσ  (10) 

where  0 1 1, , , N  aA a a  is an M N  matrix. Vector y  and 
matrix A  are referred to as the measurement vector and the 
measurement matrix, respectively. Because 1R  , it is clear 
that M N  and (10) is thus an underdetermined equation. 

 x t

 p t

my

intt mTint

t

t T

1  
Fig. 2.  The structure of RD system. 



 4

The reconstruction of the radar echo signal  x t
 
is equiva- 

lent to the recovery of the sparse vector σ . When matrix A  
satisfies the RIP condition (2), the sparse vector σ  can be 
exactly reconstructed by solving (1) or (3). As discussed in 
Section I, the current hardware and computational capacity are 
infeasible to implement such a large-scale reconstruction. This 
paper provides an implementable reconstruction technique 
upon exploiting the structure characteristic of the measurement 
matrix. 

III. STRUCTURE OF MEASUREMENT MATRIX AND SLIDING 

RECONSTRUCTION 

The structure of the measurement matrix results from the 
combination of RD system and waveform-matched dictionary. 
Because the transmit radar waveform  s t  has a finite duration 
of pT , i.e.,   0s t   for [ , )0 pt T ,    0n t s t n    of  tψ  
also has a finite duration, i.e.,   0n t   for 0 0[ , )pt n T n   , 

0,1, , 1n N  . Then, it is observed from (8) that the n-th 
column of the measurement matrix A  takes nonzero values 
only in finite indexes, i.e., , 0m na   for /m n R     or 

 0 int/ 1p Tm T n     . That is, the measurement matrix A  is 
banded matrix with non-zero elements positioned around the 
diagonal and there are overlaps between the rows. An example 
with 10B MHz , 0.9pT s , 5.4T s  and 3R   is shown in 
Fig. 1 in which 18M   and 45N  .  

With such a special structure of the matrix A , a straightfor- 
ward approach, as shown in Fig. 3, is to divide the measurement 
vector y  into L non-overlapping segments, ( ) , 1,2, ,l l Ly  , 
whereas the sparse coefficient vector σ  is partitioned into 
overlapping segments, ( ) , 1,2, ,l l Lσ  , such that a segment 
contains all the entries that are responsible to a segmented 
measurement vector. Let ( )lA  be the measurement sub-matrix 
which is formulated by extracting the rows of A  that 
contribute to ( )ly . Then the large-size sparse reconstruction 
problem (3) can be decomposed into L small-scale ones, 

 1

( ) ( )

)

) (

(min

s.t . ,

l

l

l

l l



 

σ
σ

σy A





 (11) 

for 1,2, ,l L  . As the dimension of (11)  can be set in the 
implementable range, the overall complexity and storage 
requirement can be significantly reduced. Once we obtain the 

solution of (11) for 1,2, ,l L  , we should be able to recover 
the Nyquist samples of the radar echo signals. 

One important problem in (11) is that its feasibility is not 
guaranteed because the measurement sub-matrix ( )lA  does not 
necessarily satisfy the RIP condition, even if the original 
problem in (3) does. As we discussed in the previous section, 
the column vectors na  of the measurement matrix A  is 
obtained by passing  n t  through the RD system. Then, 
according to the segmentation of y  and the generation of ( )lA , 
we can find that the last few columns of ( )lA  cannot contain all 
compressive samples of the corresponding elements. There is a 
high dependency between the last few columns of ( )lA , even 
completely dependent. Therefore, ( )lA  cannot satisfy the RIP 
condition (2). We also notice that there are overlapped 
estimates between two consecutive estimates ( 1)lσ  and ( )lσ . 

In the next section, we develop a new segment-sliding recon- 
struction scheme which guarantees the RIP condition to be 
satisfied as long as it is satisfied in the original problem of (3).  

IV. SEGMENT-SLIDING RECONSTRUCTION SCHEME 

For simplicity, let the receive time T  be P  times the radar 
pulse width pT , i.e., pT PT  with integer 1P . Denote 

pN N P  and ( )pM N RP  as the number of Nyquist samples 
and that of the compressive samples in a pulse width, 
respectively.  

Referring to Fig. 4, we modify sub-vector ( )lσ  to include S  
radar pulses, where 1 S P   is an integer, and then have the 
overlapping sub-vectors ( )lσ  as, 
  ( ) : 1 , 1,2, , ,l n n N l L   σσ     (12) 

where  1 pn l N  , and pN SN  is the length of the sub- 
vector ( )lσ . There are L P S   sparse sub-vectors. Moreover, 
let us express ( )lσ as ( ) ( ) ( ) ( )

1 2[ ) ,( ) , , ) ]( (l l T l T l T T
Sσ σ σ σ     where 

 ( ) ( ) ( 1) : 1l
s p p

l s N sN  σ σ   is of length pN . The selection of S  
depends on the computational capacity and sparsity in the sub- 
vector ( )lσ . In the following, we assume that sub-vectors ( )lσ  is 
sparse for all 1,2, ,l L  .  

Similarly, we segment the measurement vector y  into 
overlapping measurement sub-vectors ( )ly , 
  ( ) : 1 , 1,2, , ,l m m M l L   y y      (13) 

where  1 1pm l M   , and  1 pM S M   is the length of the 

 1A
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 3A

y A
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 1σ

σ
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Fig. 3 Schematic illustration of implementing a large-scale reconstruction                          Fig. 4.  The schematic illustration of new segmenting. 
problem as multiple small-scale reconstruction problems.  
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sub-vector ( )ly . Thus the sub-vector  ly  is downward shifted 

pM  compressive samples in comparison with  1ly .  
By extracting the columns and rows of A  corresponding to 

( )lσ  and ( )ly , we can formulate an M N   measurement sub- 
matrix ( )lA  as 
  ( ) : 1, : 1 , 1,2, , .l m m M n n N l L     A A        (14) 

Similar to the partition of ( )lσ , we can express ( )lA  as 
( ) ( ) ( ) ( )

1 2[ , , , ]l l l l
SA A A A    where ( ) ( ) (1: ,( 1) : 1)l l

s p pM s N sN  A A   . 
In practice, we can downward shift multiple pN  coefficient 

elements to formulate the sub-vector ( )lσ . Then, the sub-vector 
 ly  and the measurement sub-matrix  lA are adjusted corre- 

spondingly. For simplicity, we assume that pN  coefficient 
elements are shifted in the theoretical analyses. 

As can be observed in Fig. 4, ( )ly  is related to three sub- 
vectors ( 1)

1
lσ , ( )lσ , and ( 1)l

S
σ . Define 

 
 ( 1)

1( 1)
1: ,0 : 1

,
p p

l
p pl

M N

M M N




  
 
  

A
A

0

 
  (15) 

 
 

( 1)

( 1)
.

1: ,0 : 1

p pM N
l

p
l

pS M M N






 
 
   

0
A

A


 
 (16) 

Then, ( 1) ( 1)
1

l l A σ   and ( 1) ( 1)l l
S

 A σ 


 are the contributions to ( )ly  
from ( 1)

1
lσ  and ( 1)l

S
σ , respectively. The l-th measurement 

sub-vector ( )ly  is given by 

 

( ) ( ) ( 1) ( 1)

( ) ( 1) ( 1) ( ) ( ) ( 1) ( 1)
1

( 1) ( 1) ( ) ( )
1

, 1,

, 2,3, , 1,

, .

l l l l
S

l l l l l l l
S

l l l l

l

l L

l L

 

   

 

  
    
  

A σ A σ

y A σ A σ A σ

A σ A σ

  
      

  
 (17) 

Define 

 
( )

( )

( ) ( 1) ( 1)
1

, 1,

, 2,3, , .

l
l

l l l

l

l L 

  
 

y
y

y A σ


   

 (18) 

Then, (17) can be represented as 

 
( ) ( ) ( 1) ( 1)

( )

( ) ( )

, 1,2, , ,

, .

l l l l
Sl

l l

l L

l L

    


A σ A σ
y

A σ

   
  

 (19) 

Define 

 
( 1) ( 1)

( )
, 1,2, , 1,

, .
p p

l l
Sl

M N

l L

l L

 



    

A σ
n

0

  
   (20) 

We can rewrite (19) in a general form of compressive recon- 
struction in the presence of noise as 
 ( ) ( ) ( ) ( ) , 1,2, ,l l l l l L  y A σ n     (21) 

It should be noted that, different from the formulation in Fig. 
3, the sub-matrix  lA  in the above expression satisfies the RIP 
condition as long as A  does. This is because each column of 

 lA  completely contains all nonzero elements of the corres- 
ponding column of A .  

As revealed by (20), we take the partial measurements in the 
 1 -thl  segment as the noise in the -thl  segment. Thus, there 
will be an estimation error when solving (21). Meantime, the 
model (21) is formulated under the assumption that we have 
exactly obtained the ( 1)lσ . Therefore, any estimation inaccu- 
racy in ( 1)lσ  will affect the estimate of ( )lσ . In the next section, 
we will conduct the analyses of these interferences on the 
estimation performance. 

Considering an inaccurate estimate of ( 1)lσ , we refine the 

model (21). Let ( 1)
1

ˆ lσ  be the estimate of ( 1)
1
lσ  and ( 1)

1
lσ  be the 

error between ( 1)
1
lσ  and ( 1)

1
ˆ lσ , i.e., ( 1) ( 1) ( 1)

1 1 1
ˆl l l    σ σ σ   . Then, 

(17) becomes 
( ) ( ) ( 1) ( 1)

( ) ( 1) ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( 1)
1 1

( 1) ( 1) ( ) ( ) ( 1) ( 1)
1 1

, 1,

ˆ , 2,3, , 1,

ˆ , .

l l l l
S

l l l l l l l l l
S

l l l l l l

l

l L

l L

 

     

   

  
      


   

A σ A σ

y A σ A σ A σ A σ

A σ A σ A σ

  


        


    

 (22) 
Define 

 
( )

( )

( ) ( 1) ( 1)
1

, 1,

ˆ , 2,3, , ,

l
l

l l l

l

l L 

  
 

y
y

y A σ




  
 (23) 

 

( 1) ( 1)

( ) ( 1) ( 1) ( 1) ( 1)
1

( 1) ( 1)
1

, 1,

, 2,3, , 1,

, .

l l
S

l l l l l
S

l l

l

l L

l L

 

   

 

 
    
  

A σ

n A σ A σ

A σ

 
    

 
 (24) 

Then, we have 
 ( ) ( ) ( ) ( ) , 1,2, , .l l l l l L  y A σ n     (25) 

When ( )lσ  is sparse and 
2

( ) ( )l ln , we can obtain the estimate 
( )ˆ lσ  of ( )lσ  by solving the following constrained optimization 

problem: 

 
( )

1

( ) ( ( )

2

) ( )

min

s.t . .

l

l l l l




 

σ

y A σ



 
 (26) 

The “noise” ( )ln  is generated during estimation process that  
integrates the interferences from the estimation error in the 
previous segment and the partial measurement in the subse- 
quent segment. For convenience, we refer to ( )ln as the virtual 
noise sub-vector. Similarly, we name ( )ly  as the virtual 
measurement sub-vector. It is obvious from (24) that the virtual 
noise ( )ln  consists of ( 1) ( 1)

1
l l A σ   and ( 1) ( 1)l l

S
 A σ 


 generated by 

the inaccurate estimate in segment 1l   and the partial 
measurement in segment 1l  . For convenience, we call them 
forward and backward virtual noises, respectively. 

The virtual noise ( )ln  is closely related with measurement 
matrix. From the definitions of ( 1)lA  and ( 1)lA


, respectively 

depicted in (15) and (16), we observe that the forward 
(backward) virtual noise exists only in the range of [1: ]pM  
( [ 1: ]pM M M   ). As discussed in the next section, the 
backward virtual noise level is in general much larger than that  
of the forward virtual noise.  

It is seen from (25) that we can formulate a series of sparse 
reconstructions by properly segmenting the measurement 
vector and the coefficient vector. Then a large-scale reconstruc- 
tion problem is decomposed into a series of small-scale ones. 
We call the method as segment-sliding sparse reconstruction 
(SegSR). Algorithm 1 describes the SegSR process in detail. 

Solving (26) is one of the dominant steps in the imple- 
mentation of the proposed technique. Theoretically, any sparse 
estimation algorithm can be used. However, the formulation 
(25) has three distinct characteristics: (1) The sparsity level of 
each segment is in general unknown; (2) There are some 
overlaps between two consecutive segments of the sparse 
vector σ ; (3) The distributions of the virtual noise are different 
for each virtual measurements. These characteristics can be 
incorporated into the estimate of ( )lσ  to improve the algorithm 
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efficiency. Toward this objective, we make some modifications 
on the OMP algorithm with partially known support 
(OMP-PKS) [31] to solve (26). Algorithm 2 presents the 
computational flowchart of the algorithm, termed as the 
two-step OMP-process (TOMPP). TOMPP consists of three 
main processes. One is the initialization to take into account the 
partially known support from the previous segment. The second 
one is the OMP process with a threshold 1  to obtain a rough 
estimate (Steps 2~4) derived for the whole virtual noise. The 
last process (Steps 5~7) is the refinement OMP process with 
threshold 2  for the sparse estimate in sparse range 
[0 : 1]pN N   because of the virtual noise structure. The 
effectiveness of the TOMPP is validated by theoretical analyses 
and simulation experiments in the next three sections. 

V. EFFECTS OF ERRORS ON RECONSTRUCTION PERFORMANCE 

From the SegSR flowchart, we find that the estimate in the 
current segment will affect the estimate of the subsequent 
segment. The estimation performance in each segment will be 
affected by the virtual noise. This section takes the OMP 
algorithm as an example to analyze the effect of the virtual 
noise on the estimation performance in terms of the sparse entry 
positions and sparse coefficients. 

A. Effect of the Virtual Noise on Position Estimation 

OMP is an iterative algorithm, which selects at each step the 
column of the measurement matrix which is most highly 
correlated with the current residuals as an estimate of one of 
sparse positions. References [32]-[34] have conducted 
thorough analyses on the recovery performance of sparse 
positions in 2 -bounded noise and  -bounded noise. These 
analyses indicate that the sparse positions can be estimated 
exactly by OMP for the non-zero sparse element when its 
magnitude is greater than some value. For the underlying 
problem considered in this paper, we first show that the virtual 
noise (24) is 2 -bounded and  -bounded. Then we derive the 
conditions for correct sparse position estimation. 

Before proceeding, we define a few notations. Let  l  and 
 l
s  1, ,s S   denote the support sets of  lσ  and 
 l
sσ  1, ,s S  , respectively. Let  1

1
l  denote the support 

sets of  1
1
lσ . Let  l

k  be the k -th order RIP constant of 
matrix  lA . For the virtual noise in (26), we have: 

Theorem 1：For 1,2, ,l L  , the virtual noise ( )ln  satisfies 

    

 

   

 

1
2

1 1
2 2

2
2

1
2

, 1,

, 2,3, , 1,

, .

l

l l l l

l

b l

a b l L

a l L





 



 
    




n   (27) 

       

 

   

 

1

1 1

1

, 1,

, 2,3, , 1,

, .

l

H
l l l l l

l

b l

a b l L

a l L






 
  

 


 
    




A n    (28) 

where  
 

   
1

1

1 1

2

1
2 11 l

l l la  

  


  σ  and  

 
   

1
1

1 1

1 2

1
1l

l l la  

  
  

 σ   for 

2,3, ,l L  ,  
 

   
1

1 1 1
2

2
1 l

S

l l l
Sb  

  


  σ   and  

 
   

1

1 1 1

1 2
l

S

l l l
Sb  

  
  

 σ   

for 1,2, , 1l L  . 

Proof: See Appendix A. 
From (27) and (28), it is found that the virtual noise ( )ln  is 

both 2 -bounded and  -bounded and is limited by  
2
l  and 

 l , respectively. The upper limits consist of two parts,  1
2
la   

(  1la 
 ) and  1

2
lb   (  1lb 

 ). which are related to the estimate error 
 1
1
lσ  in the previous segment and the sparse sub-vector  1l

S
σ  

in the subsequent segment, respectively. The noise limits  
2
l  

and  l  are usually dominated by  1
2
lb   and  1lb 

 , respectively. 
For the 2 -bounded and  -bounded virtual noise, we have 

Algorithm 1. SegSR Scheme 

Input: S , pM , pN , M , N  and L  
Output: Estimated sparse vector σ̂  
Steps: 
1) Initialize 1l  . 
2) Extract the 1M   measurement sub-vector  ly  and the 

M N   measurement sub-matrix  lA . 
3) Calculate the virtual measurement sub-vector ( )ly  by (23). 
4) Solve (26) and obtain the estimate  ˆ lσ  of  lσ . 
5) Let 1l l  . If l L , go to Step 6)；otherwise, generate the 

M N   sub-matrix  1lA  by (15), extract the sub-vector 
 1
1

ˆ lσ  from the estimated  1ˆ lσ  and go to Step 2). 
6) Formulate the estimated sparse vector σ̂  of σ  as 

       
    

    

1
ˆ1 : 1 , 1, , 1,

1 : 1 ,

ˆ

ˆ .ˆ

p
l

p

L
p

l N lN l L

l N N l L

    






  

σ

σ

σ

σ

 


 

Algorithm 2. TOMPP 

Input:  ly ,  lA , pN , N ,  1ˆ lσ , threshold parameters 1  and 

2  ( 2 1  ) 
Output: Estimated sparse sub-vector  ˆ lσ  
Steps: 

1) Initialize the index set [0]  as the known support in the 

-thl segment estimate,     1[0] ˆsupport : 1l
pN N  σ  ; the 

residual    [0]
0

l r I P y  , where     [ 0] [ 0 ]

†

0
l l

 
P A A   denotes 

the projection onto the linear space spanned by the columns of 
 

[0 ]

l


A . Let 1i  . 

2) Find the column of  lA  that is most correlated with the 
residual [ 1]ir , i.e.,  

 [ ] [ 1]

0,1, , 1

arg max , ,li i
j

j N

 

 
 a r


   

and update the index set  [ ] [ 1] [ ]i i i    . 

3) Update the residual    [ ] li
i r I P y  . 

4) If [ 1] [ ]
12 2

i i   r r  , let 1i i   and go to Step 5); 

otherwise, let 1i i   and return to Step 2). 

5) For columns 0 1pN N   of  lA , find the column that is 
most correlated with the residual [ 1]ir , i.e.,  

                [ ] [ 1]

0,1, , 1

arg max , ,
p

li i
j

j N N

 

  
 a r


   

and update index set  [ ] [ 1] [ ]i i i    . 

6) Update the residual    [ ] li
i r I P y  . 

7) If [ 1] [ ]
22 2

i i   r r  , go to Step 8); otherwise, let 1i i   
and return to Step 5). 

8) Calculate the estimate  ˆ lσ  by       
[ ] [ ]

†
ˆ

i i

l l l

 
 Aσ y   . 

 



 7

the following theorems to find the correct sparse positions. 

Theorem 2: Suppose that    
2

2
l ln  and  lA  satisfies 

condition  
   

1
1 1l

l l
 

    
 

 . Then OMP with the stopping 

rule  [ ]
22

li r  will exactly recover the support  l  of  lσ , if 

all the nonzero coefficients  l
j  (  lj ) satisfy 

  
 

   

 
 

 

21

1

1 1

.
1 1

l

l

l l

l
j

l l

 




 

 

 
  

 
    
 





 (29) 

Theorem 3: Suppose that       H
l l l



A n   and  lA  

satisfies condition  
   

1
1 1l

l l
 

    
 

 . Then OMP with the 

stopping rule     [ ]

2

H
l li A r   will exactly recover the support 

 l  of  lσ , if all the nonzero coefficients  l
j (  lj ) satisfy 

  
 

     

 
 

 

1

1

1 1

.
1 1

l

l

l l l

l
j

l l

 




 

 

 
   

 
    
 





 (30) 

The proofs of two theorems closely follow those in [33] and 
thus are omitted here.  

Equipped with these two theorems, we can find the correct 
sparse entry positions by the OMP algorithm if the nonzero 
coefficients satisfy (29) or (30). However, it should be noted 
that the two conditions are derived with overall effects of the 
virtual noise and the resulting minimum nonzero magnitude 
may be high. In this case, we may miss some nonzero elements 
of the sparse vector.  

As discussed in the previous section, the virtual noise  ln  
exists only in the ranges [1: ]pM  and [ 1: ]pM M M   . Then the 
columns of  l

sA  2, ,s S   are orthogonal to ( 1) ( 1)
1

l l A σ   and 
the columns of  l

sA  1, , 1s S   are orthogonal to ( 1) ( 1)l l
S

 A σ 


. 
In particular, when 3S  , the columns of  l

sA  2, , 1s S   
are orthogonal to both forward virtual noise ( 1) ( 1)

1
l l A σ   and 

backward virtual noise ( 1) ( 1)l l
S

 A σ 


. By the principle of the OMP, 
the estimation of the sparse positions of  

1
lσ  is mainly affected 

by the ( 1) ( 1)
1

l l A σ   and, similarly, that of  l
Sσ  is mainly affected 

by the ( 1) ( 1)l l
S

 A σ 


. In general, the noise level of ( 1) ( 1)l l
S

 A σ 


 is 
higher than that of ( 1) ( 1)

1
l l A σ  . Then we can use refinement 

OMP process in Algorithm 2 with a small threshold 2  to 
improve the estimate of the sparse vector  lσ  in the range 
[0 : 1]pN N  . 

B. Effect of the Virtual Noise on Amplitude Estimation 

We now analyze the effect of virtual noise on amplitude 
estimation of sub-vectors  l

sσ  1,2, ,s S   of  lσ . To simplify 
the analysis, we assume that the support  l  of  lσ  is correctly 
recovered.  

With the support  l  of  lσ , we can obtain the estimate  
 ˆ

l

l


σ  

of  
 

l

l


σ  through the least-square solution of 

  
 

 
 

   
 

 
 

   
1

, 1,2, , ,l l l l
s s

Sl l l l l l l

s
l L

   
    y A σ n A σ n       (31) 

where 

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 1

1 1 1 1
1 1

1 1
1 1

1 1

1 1 1 1

1 1

, 1,

, 2,3, , 1,

, .

l l
S S

l l l l
S S

l l

l l

l l l l l

l l

l

l L

l L

 

   

 

 

 

   

   

 

 

 



    

  


A σ

n A σ A σ

A σ

 

    


 

 (32) 

The estimated  
 ˆ

l

l


σ  is given by 

  
 

 
    †

ˆ .l l

l l l

 
σ A y   (33) 

For  
 ˆ

l

l


σ , we have the estimation error bound as in Theorem 4. 

Theorem 4: For 1,2, ,l L  , the least-squares estimate error 

of (31),  
 

 
 

 
 

2 2

ˆ
l l l

s s s

l l l

  
  σ σ σ    1, ,s S  , is upper bounded by 

  
 

 
 

 
 

 
 

 
 

1

1 1
1

1
1

1

2

1

2 2 2

1

1 1

2

1

, 1,

, 2,3, , 1,

, .

l
S

l l l
s S

l

l

l l

S s

S l

l

s

l

l L

l L











 



 

 





 

  





 
     

  

σ

σ σ σ

σ



   



 (34) 

where    2( 1) 21 1s S s        and  
 

 
  1l l

l l

K K
   , with 

 lK  and  l
k  defined by         1 1max , ,l l l lK       and 

        1 1max , ,l l l l
k k k k        . 

Proof: See Appendix B. 
The error bound (34) not only gives the least-squares bound 

but also shows the bound distribution in each segment. Note 
that, when  

  1 3l

l

K
  , we have 1 2   and 1  . From the 

relation    2( 1) 21 1s S s       , we know that   decreases 
as s  increases. Therefore, the estimation error due to the 
forward virtual noise decreases as s  increases. However, the 
error introduced by the backward virtual noise increases with s  
because of the 1S s    term. Similar to the analyses on the noise 
bounds, the error bound of the current segment is usually domi- 
nated by the error introduced in the subsequent segment. With 
the effect behavior of the subsequent segment, we can deduce 
that the sub-vector  

1
lσ  of the sparse vector  lσ  can be more 

accurately estimated than other sub-vectors  l
sσ  2, ,s S  . 

Therefore, we downward slide one pulse width in Algorithm 1. 
While we can downward slide by multiple pulse widths. the 
estimation error will nevertheless increase, as the simulated 
results will show in Section VII. 

VI. STORAGE REQUIREMENTS AND COMPUTATIONAL 

COMPLEXITY 

A. Storage Requirements 

For the reconstruction problem (3), we need to store M N  
matrix A  which occupies  8 8 1 p pMN P P M N   bytes using 
the standard IEEE double precision. For the SegSR scheme, we 
only need to store M N   sub-matrix ( )lA  involved in sparse 
reconstruction sub-problem (26). Therefore, the required 
storage space is  8 8 1 p pMN S S M N    bytes. Table I shows the 

TABLE I 
 STORAGE REQUIREMENTS 

Reconstruction 
by (3) 

SegSR scheme 

2S   3S   4S   

92.02GB  9.16MB  18.31MB  30.52MB
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storage requirements with 249P  , 200pM   and 1000pN  . 
It is seen that the storage space is significantly reduced when 
the SegSR scheme is used. 

B. Computational Complexity 

As is well known, the computational complexity for OMP to 
solve the problem (3) is  O KMN . For the SegSR scheme, the 
sub-problem (26) is solved by OMP with a complexity of 

  lO MN   . Similar to the analysis of storage capacity, the 
complexity of sub-problem is significantly lower than that of 
original problem. Therefore, the real-time capacity for SegSR 
is improved greatly. Furthermore, when we use OMP with 
partially known support to solve the sub-problem, the real-time 
capacity can be improved further. 

VII. SIMULATION RESULTS 

In this section, we evaluate the performance of the proposed 
SegSR scheme through several simulation experiments. With- 
out special statements, 500 realizations are conducted and the 
averaged results are presented. 

We take the following linear frequency modulated (LFM) 
pulse signal as an example, 

        2
rect 2 cos 2 ,p p ps t t T T t T    (35) 

where pT  is the pulse width, / pB T   is the chirp rate, B  is 
the bandwidth of the LFM signal, and  rect / pt T  represents a 
rectangular pulse 

   1,

0, elsewhere.

2 2,
rect / p p

p

T T
t T

t 






 (36) 

In order to make comparison with direct reconstruction, we 
set the signal parameters such that the measurement size is 
moderate. In simulations, 100B MHz , 10pT s and 100T s . 
For the RD system, the chipping rate of p(t) is set as 

100pB MHz , the integration time is set as int 0.05T s , which 
means that the sampling rate of ADC is 20MHz  and the down 
sampling rate is 5R  . With these parameters, we can obtain 

10000N   Nyquist samples and 2000M   measurements in a 
receive interval, and 1000pN   Nyquist samples and 200pM   
measurements in a pulse width.  

For received echo model (4), we assume that the echo 
amplitudes follow a uniform distribution in  0,1 , and the time 
delays are randomly chosen in resolution grids. Furthermore, 
we assume that the element of coefficient vector σ  is nonzero 
with probability p , and zero with probability  1 p . Then the 
mean sparsity of coefficient vector σ  is equal to p  times the 
Nyquist samples over the receive time. 

A. Properties of Virtual Noise 

It is seen that the virtual noise directly affects the reconstruc- 
tion performance. We now evaluate some properties of the 
noise.  

We first present the existence range of the virtual noise. Note 
that the length of the virtual measurement in a segment is 

800M   when 200pM   and 3S  . Then the forward virtual 
noise exists in [1: 200]  and backward virtual noise in [601:800] . 
Fig. 5(a) shows a realization of the virtual noise with respect to 
the measurement time in the second segment. The result is 

obtained with 0.005p   and 3S  , and (26) is solved by OMP- 
PKS. It is seen that Fig. 5(a) is consistent with the theoretical 
analysis. 

Next, we measure the virtual noise level. We define the 
following three signal-to-noise ratio (SNR) metrics, i.e., 

( )l
oSVNR , ( )l

aSVNR , and ( )l
bSVNR , to describe the levels of total 

virtual noise, forward virtual noise, and backward virtual noise 
in the -thl  segment, respectively: 

2( ) ( )

( ) 2
2( )

2

l l

l
o

l
SVNR

E


 
  

σA

n

 


, 

2( ) ( )

( ) 2
2( 1) ( 1)

1 2

l l

l
a

l l
SVNR

E  


   

A

A σ

σ

 


, 

2( ) ( )

( ) 2
2( 1) ( 1)

2

l l

l
b

l l
S

SVNR
E  


 
  

A

σA

σ



 



. 

Fig. 5(b) shows the results of the second segment for 
different values of p , where 3S  , and the results are obtained 
using the OMP-PKS. It is clear that ( )l

bSVNR  is significantly 
lower than ( )l

aSVNR , and ( )l
oSVNR  is slightly lower than ( )l

bSVNR . 
It means that the backward noise level is much larger than that 
of the forward virtual noise and the virtual noise is dominated 
by the backward virtual noise. 

B. Signal Reconstruction in the Noise-Free Case 

We now evaluate the reconstruction error and the running 
time of our proposed SegSR scheme with OMP-PKS and 
TOMPP. The effects of different segment lengths and sliding 
widths are conducted. For simplification, the SegSR scheme 
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Fig. 5.  (a) Variations of virtual noise amplitude. (b) Signal to virtual noise 
ratio.
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with OMP-PKS and TOMPP is simply denoted as OMP-PKS 
and TOMPP, and the direct reconstruction by OMP is denoted 
as OMP. 

(1) Reconstruction Error 
We take as performance criterion the relative reconstruction 

error rE   

 2

2

.
ˆ

rE



σ σ

σ
 (37) 

Fig. 6(a) shows the relative reconstruction errors versus p  
for different segment lengths S . The reconstruction errors by 
OMP are not shown here for comparison because they derive 
much smaller errors in the noise-free case. It is seen that the 
relative reconstruction errors by TOMPP are much lower than 
by OMP-PKS. This is because TOMPP can find sparse 
coefficients with smaller amplitudes than OMP-PKS can do, as 
we discussed in Section V. Fig. 6(b) further validates the 
observation through correct discovery rate (CDR) which is 
defined as the ratio of the number of coefficients correctly 
declared as nonzero to the total number of nonzero coefficients. 

In addition, we notice that the relative reconstruction errors 

rE  by OMP-PKS remain unchanged for different values of S . 
However, the relative reconstruction error rE  by TOMPP sub- 
stantially decreases when S  is changed from 2 to 3. When 

4S  , the relative reconstruction error rE  does not signifi- 
cantly change from the 3S   case. This is because the virtual 
noise has different effects on the estimate error  

2

l
sσ  for 

1, ,s S  . To elaborate this, we show in Fig. 7 the variation of 
 

2

l
sσ  versus s  in the second segment with 0.01p  . It is 

seen that  
2

l
sσ  for 1s   is the smallest among all  

2

l
sσ  

( 1, ,s S  ). Meanwhile,  
2

l
sσ  for 1s   and 3S   is almost 

same as for 1s   and 4S  .  
Note that the SegSR scheme only outputs the first pN  

elements (number of Nyquist samples in a pulse width) in a seg- 
ment estimation. In practice, we can output the estimates of the 
first multiple pN  elements, pWN  (1 W S  ). Then, the mea- 
surement sub-vector  ly  should be downward shifted by pWM  
compressive samples with respect to  1ly . The measurement 
sub-matrix  lA  will change correspondingly. Fig. 8 shows the 
relative reconstruction errors under different W  by TOMPP. It 
is seen that, for a given p  and S , the relative reconstruction 
error rE  increases as W  increases. That is to say, we obtain the 
smallest reconstruction error when we downward slide a pulse 
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width. Combined with Fig. 7, TOMPP achieves the optimal 
performance in terms of reconstruction error when we assign 
the segment length 4 times pulse width and the sliding length a 
pulse width. 

(2) Running time 
We now use CPU time to illustrate the running time. The 

simulation is performed in MATLAB 2011b environment on a 
PC with 3.1GHz Intel core i5-2400 processor and 4 GB RAM. 
Fig. 9 shows that the TOMPP is faster than the OMP. It should 
be noted that the simulations are only illustrative for a moderate 
size example. However, the TOMPP solves large-scale recons- 
truction problem which cannot be solved by the OMP. 

C. Signal Reconstruction in the Noise Case 

We assume that the received baseband signal is corrupted by 
band-limited, additive, white Gaussian noise  n t  with band- 
width 2B  and power spectral density 0 2N . We use the 
following reconstruction signal-to-noise ratio (RSNR) 

 
 

2

2
2

2
ˆ

RSNR
E


   

σ

σ σ

Ψ

Ψ
 (38) 

to evaluate the reconstruction performance.  
The variations of RSNR versus p  by TOMPP and OMP- 

PKS are given in Fig. 10(a) for a given input signal-to-noise 
ratio (ISNR), defined as    2

0 02
T

ISNR x t dt TN B  . Fig. 10(b) 
shows the variations of RSNR versus ISNR by the TOMPP and 
the OMP-PKS for a given p . For comparison, we also give the 

RSNRs by the OMP. It is seen that the RSNRs by both the 
TOMPP and the OMP-PKS are smaller than those by the OMP. 
However, the RSNRs by the TOMPP are close to those by the 
OMP and are much higher than the OMP-PKS. In case of low 
ISNRs ( 0dBISNR  ), the OMP, OMP-PKS, and TOMPP all 
perform poor. This is because they can only find large nonzero 
coefficients. For high ISNRs, the TOMPP is much better than 
the OMP-PKS, which further validates the ability of the 
TOMPP of finding small nonzero coefficients. The simulation 
results in noisy case further confirm that setting the segment 
length be 4 is optimal segmenting. 

VIII. CONCLUSIONS AND DISCUSSIONS 

In this paper, we have developed a SegSR scheme for imple- 
mentable recovery of full-range pulsed radar echoes from 
AIC-based sub-Nyquist samples. Our main contributions are 
summarized as follows: 
1) Proper segmentation of the sparse vector and the measure- 

ment vector such that the RIP conditions are maintained. 
This is the core of the proposed SegSR scheme.  

2) Analyses of the effect of adjacent segment interference, or 
virtual noise, on the performance of sparse estimation. 
Near-optimal length of segments is suggested. 

3) A new reconstruction algorithm, TOMPP, for each seg- 
ment, which considers the virtual noise distributions in the 
measurement sub-vector and efficiently recovers partial 
sparse coefficients of each segment. 

The proposed SegSR scheme decomposes a large-scale 
reconstruction problem into a series of small-scale reconstruc- 
tion ones, thereby significantly reducing the storage and com- 
putational load. The SegSR is implemented in a sliding mode 
and thus is suitable for real-time applications. 

This paper takes the RD AIC system as an example to 
introduce the proposed SegSR scheme. We maintain that it can 
be applied to other AIC systems in which the measurement 
matrices have a similar structure as shown in Fig. 1. 

APPENDIX 

A. Proof of Theorem 1 

To prove Theorem 1, we introduce some properties of 
restricted isometry constant of a matrix A , which appear in 
different publications. The following Lemma 1 gives a summ- 
ary of these results. One can refer to [3], [19] for more details. 

Lemma 1: Assume that the matrix A  has restricted 
isometry constant K . Denote   and   as disjoint support 
sets of the sparse vectors σ  and σ , respectively, where k  , 

k    and k k K  . Then, 
(1) 

2 2
, k k  σ σ σA σA , 

(2) 
2

H
K  A A , 

(3)  
2

1 1

1
H

K


  


A A , 

(4) for any positive integer k K , k K  . 

Proof of Theorem 1: First, we show that the virtual noise 
( )ln  is 2 -bounded. With the definition (24) of  ln , for 
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Fig. 10.  (a) RSNR versus p  for ISNR 10dB . (b) RSNR versus ISNR  

for 0.01p  . 
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2,3, , 1l L  , we have 

 

         

       

 
   

 
   

1 1
1

1 1 1 1
1

1 1 1 1
1

1 1 1 1

2 2 2

2 2

1
22

1 1 .l l
S

l l l l l
S

l l l l
S

l l l l
S  

   

   

   

 

  

  

    

n A σ A σ

A σ A σ

σ σ

   


  

  

 (A.1) 

The last inequality is from the RIP condition (2). Define 
 

 
   

1
1

1 1

2

1
2 11 l

l l la  

  


  σ   and  

 
   

1

1 1 1
2

2
1 l

S

l l l
Sb  

  


  σ  . Then 

(A.1) can be simply written as 

      1
2 2

2

1 , 2,3, , 1.l l la b l L    n   (A.2) 

For 1l  ,        1 2 2 2

2 2
2S bn A σ 


= . For l L , 

       1

2 2

1 1
1 2

L L L La   n A σ = . Then (27) is proved. 

Next, we show that the virtual noise ( )ln  is  -bounded. 
Similarly, for 2,3, , 1l L  , we have 

                  1 1 1 1
1 .

H H H
l l l l l l l l

S
   

  

  A n A A σ A A σ      


 (A.3) 

Note that  1lA  is orthogonal to  l
sA  2,3, ,s S   and  1lA


 is 

orthogonal to  l
sA   1,2, , 1s S  . Then     1

H
l l A A   

    1
1

H
l lA A   and          1 1

H H
l l l l

S
 A A A A   

 
. Thus, we have 

                  1 1 1 1
1 1 .

H H H
l l l l l l l l

S S
   

  

  A n A A σ A A σ      


(A.4) 

We discuss the two terms in the right-hand side of (A.4) 

separately. For the first term, note that     1
1

H
l l A A   

    1 1
2 1

H
l l A A  . Then, by Property (1) of Lemma 1, we have 

             

 
     

 
   

1
1

1 1 1 1 1
1 1 2 1 1

1 1 1
1 1

, 1, ,2 1

1 1
11 2

max ,

.

p p p

l

H H
l l l l l l

l l l
j

j N N N

l l 

    

 

  

  

 

 

  

 

 

A A σ A A σ

a A σ

σ



    

 

 

 (A.5) 

Similarly, for the second term, we have 
             

 
   

1

1 1 1 1 1 1 1
1 1 2

.l
S

H H
l l l l l l l l

S S S S S S 

      
  

 

 A A σ A A σ σ      


(A.6) 

Substituting (A.5) and (A.6) into (A.4) results in 

     
 

   
 

   
1 1

1

1 1 1 1
1

21 1 2
.l l

S

H
l l l l l l

S  

   

   


  A n σ σ      (A.7) 

Define  
 

   
1

1

1 1

1 2

1
1l

l l la  

  
  

 σ  and  
 

   
1

1 1 1

1 2
l

S

l l l
Sb  

  
  

 σ  . We have 

         1 1 , 2,3, , 1.
H

l l l la b l L 
 



   A n    (A.8) 

Specifically, for 1l  ,              1 1 1 2 2 2
H H

S b
 

 A n A A σ   


. 

For l L ,              1 1 1
1

H H
L L L L L La  


 

  A n A A σ    . Then 

(28) is proved.                                                                           ■ 

B. Proof of Theorem 4 

Before proceeding, we derive a lemma which is used in the 
proof of theorem 4. 

Lemma 2: Let matrix U  be of full column rank and be 
partitioned as  1 2, , , SU U U U . For 3S  , assume that 

sU  1, , 2s S   is orthogonal to 2sU  1, , 2s S  . Then 

   

   

   

1 1† † † † †
1 1 1

2 2

1
1 2† † † † †

2 2 2
3 3

†

1
1† † † † †

1 1

†

1 1

1 1

,

1 1

j S
j S

i i i i
i i

j S
j S

i i i i
i i

j s S
j S s

s s i i s i i
i s i s

S

 

 


 

 

 
 

   

 
      

 
 

      
 
 
 
 

      
 
 
 
 

 

 

 

U U U C U U C

C C U C C U C

U

C C U C C U C

C

 

 



 



(B.1) 

where    †

1 2 1 1 2 1, , , , , ,i i i i  C I U U U U U U U  , 2, ,i S  . 
Proof: We proof this lemma by mathematical induction. 
For 2S  , it can be shown [35] that  

  
† † †

†† 1 1 2
2 †

2

2
1, .

 
   

 

U U U C
U U U

C
 (B.2) 

Similarly, for 3S  , we have 

      1 1

† † †
†† 2 2 3 3

2 3

3

1 †

, ,
, , .

    
  

U U U U U C
U U U U

C
 (B.3) 

Substituting (B.2) into (B.3) results in 

 

† † † † † †
1 1 2 1 2 3 3

† † † †
2 2 3 3

†
3

2 2

.

  
   
  

U U U C U U C U C

U C C U C

C

 (B.4) 

Then (B.1) is true when 3S  . 
Assume that (B.1) is true when S Q . Then for 1S Q  , by 

(B.2), we can get  

 
† † †

2 21 1†

†
1

1 1, , , , , ,
.Q Q Q Q

Q

 



        
  

U U U U U U U C
U

C

 
 (B.5) 

Substituting (B.1) with S Q  into (B.5) results in  

   

   

   

 

1
1† † † † †

1 1 1
2 2

1 1
1 1† † † † †

2 2 2
3 3

†
1 1

1 1† † † † †

1 1

† † †
1 1

†
1

1 1

1 1

1 1

1

j Q
j Q

i i i i
i i

j Q
j Q

i i i i
i i

j q Q
j Q q

q q i i q i i
i q i q

Q Q Q Q

Q




 

 
 

 

  
  

   

 



 
      

 
 

     





     




 

 

 

 

 

U U U C U U C

C C U C C U C

U

C C U C C U C

C C U C

C

 

 



 



.













 

Then (B.1) is true when 1S Q  . We thus prove Lemma 2.  ■ 
Proof of Theorem 4: We fist prove the bounds (34) for 
2,3, , 1l L  . With the least-squares estimate (33), the 

estimate error is given by 

 
 

 
 

 
 

 
 

    

 
    

 
 

 
 

 
 

  1 1 1 1
1 1

†

†
1 1 1 1

ˆ

.

l l l l

l l l l l
S S

l l l l l

l l l l l
   

   

   

    

    

   

σ σ σ A n

A A σ A σ

   

   


 (B.6) 

Note that the matrix  
 

l

l


A  is of full column rank and can be 

partitioned as  
 

 
 

 
 

 
 

1 2

, , ,l l l l
S

l l l l

   
    

A A A A    , and for 3S  , 

 
 

l
s

l


A  1,2, , 2s S   is orthogonal to  

 
2

l
s

l


A  1,2, , 2s S  . 

Then with Lemma 2, we have 
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  1 1

1

1 1ˆ , 1, , ,l l l l l l l
s s s s s S

l l l l l l l s S 

 

     
       σ σ σ P σ Q σ       (B.7) 

where  
 

l
s

l


P  and  

 
l

s

l


Q  are defined at the bottom of the page 

with  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 2 1 1 2 1

†

, , , , , ,l l l l l l l l
i ii i

l l l l l l l l

        

             
C I A A A A A A A          for 

2, ,i S  . Then by (B.7), we have 

 
 

 
 

 
 

 
 

 
 

1 1
12 2 22 2

1 1 , 1, , .l l l l l
s s s S

l l l l l s S 

 

   
    σ P σ Q σ     (B.8) 

We now derive the upper bounds of  
 

2
l

s

l


P and  

 

2
l

s

l


Q . From 

the definitions of  
 

l
s

l


P  and  

 
l

s

l


Q , we can find that  

 

2
l

s

l


P  and 

 
 

2
l

s

l


Q  are related with terms  

    
 

1 2

†

2

l l

l l

 
A A  ,  

    
 

1
1 1

†
1

2

l l

l l




 
A A  , 

 
    

 
1

1

†

2

1
l l

i

l l




 
C A   2, ,i S  ,  

    
 

1

†

2

l l
i i

l l

 
C A   2, , 1i S   and 

 
    

 
1

2

†
1

l l
S S

l l




 
C A 


. Now we discuss these terms separately. 

Note that  
    

 
 

    
 

 
    

 
1 2 1 1 1 2

1†

l l l l l l

H H
l l l l l l



     

   
 

A A A A A A      . Then for 

term  
    

 
1 2

†

2

l l

l l

 
A A  , with Properties (2)-(4) of Lemma 1, we get 

 

 
    

 
 

    
 

 
    

 

 
   

   
 

 
 

1 2 1 1 1 2
2 22

1†

1
.

1 1

l l l l l l

l

l

ll

H H
l l l l l l

l

l K
l l

K




 



     




   
 

 
 

A A A A A A     




 (B.9) 

Similarly, for term  
    

 
1

1 1

†
1

2

l l

l l




 
A A  , we have  

 
    

 
 

    
 

 
    

 

 
   

   
 

 
 

1 1 1 1 1
1 1 2 2 2 1

1

1

1†
1 1 1 1

1

2

1

2

1

2

1
.

1 1

l l l l l l

l

l

ll

H H
l l l l l l

l

l K
l l

K




 

    






    

     


 



   
 

 
 

A A A A A A     




 (B.10) 

For term  
    

 
1

1

†

2

1
l l

i

l l




 
C A   2, ,i S  , we first derive the 

bound for 2i  . Note that  1lA  is orthogonal to  l
sA  

 2,3, ,s S  . Then 

 
    

 
 

    
 

 
    

 
 

    
 

1 1
2 1 2 2 2 1 1 1

1† †
1 1 .l l l l l l l l

H H
l l l l l l l l

 


 

       

   
 

C A C C A A A A         (B.11) 

Thus 

 
    

 

 
    

 
 

    
 

 
    

 

1
2 1

1
2 2 2 1 1 1

†
1

1 †
1

2

2 22

.

l l

l l l l l l

l l

H H
l l l l l l







 




     

   
 

C A

C C A A A A

 

     
 (B.12) 

With the Properties (3) and (4) of Lemma 1, we have 

 
    

 
 

 
 

 
 

 
 

 

 
 

 
 

2 2 1 2 1 2

2

11

2

, ,

1 1
.

1 1

l l l l l l

ll

HH
l l l l l l

l l

K
 



     



                   

 
 

C C A A A A     



 (B.13) 

By Properties (2) and (4) of Lemma 1, we have 

  
    

 
 

 
 
 

2 1
2

.l l ll

H
l l l l

K
 

  
 A A    (B.14) 

Substituting (B.13), (B.14) and (B.10) into (B.12), we have 

 

 
    

   
 

 
 1

2 1

2
†

2

1 .
1

l

l l

l

l

l l K
l

K








 

 
 
  

C A   (B.15) 

For 3, ,i S  ,  

 
    

 

 
    

 
 

    
 

 
    

 

1
1

1
1 1 1

†
1

1

2

2 22

†
1 .

l l
i

l l l l l l
i i i i i

l l

H H
l l l l l l




 



 




     

   
 

C A

C C A A C A

 

     
 (B.16) 

Similar to (B.13) and (B.14), we have 

  
    

 

 
 

 
 

1

2

1 1
,

1 1
l l

i i
ll

H
l l

l l

K
 



 



       
C C 

  (B.17) 

  
    

 
 

 
 
 

1
2

.l l ll
i i

H
l l l l

K
 

  
 A A    (B.18) 

Substituting (B.17) and (B.18) into (B.16), we have 

 
    

   
 

 
   

    
 

 
 

 
   

    
 

1 1
1 1 1

1
2 1

2 2

††

2

1 1

2
†

1

1

, 3, , .
1

l

l l l l
i i

l

l

l l

l

l

l l l lK
l

K

i
l

l lK
l

K

i S









 




 

   





 




 
  
  

C A C A

C A

   

  

 (B.19) 

 
 

 
    

     
    

 
 

    
 

 
    

 

 
    

     
    

 
 

    
 

1 1
1 1 1 2 1 1

1 1
1 1 1 1

1 †† † †
11 1

2 2

2 †1 ††
11 1

2

1 , 1,

1 ,

l l l l l l l l
i ji

l l l l l l l
s s i i j s

jS
jl l l l l l l l

j i

j sS s
jl l l l l l l

j i s

s

s

 


 
  


 

       
 

  
 

      
 

  
       

  
        

 

 

A A A A C A C A

P C A C A C A

       

     

 
    

 
1

1

†
1

2, , 1,

, .l l
S

l l

S

s S



 





 


 



C A



 

 

 
 

   
    

 
 

    
 

 
    

 

   
    

 
 

    
 

 
    

 

1
1 2 1

1
1

1

1 †† †
1 1

2

1 ††
1

†
1

1 , 1,

1 , 2, , 1,

, .

l l l l l l
i i S S

l l l l l
s i i S S

l l
S S

S
S l l l l l l

i

S
S sl l l l l

i s

l l

s

s S

s S










 

     



 

    




 

  
   

 
       

 

 






A A C A C A

Q C A C A
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 13

Substituting (B.15) into (B.19), we have 

  
    

   
 

 
 1

1

1

2

†

, 3, , .
1

l

l l
i

l

i
l

l l K
l

K

i S







 

 
  
  

C A    (B.20) 

For term  
    

 
1

†

2

l l
i i

l l

 
C A  ( 2, , 1i S  ) and  

    
 

1

2

†
1

l l
S S

l l




 
C A 


, 

similar to the derivation of (B.20), we have 

  
    

   
 

 
 

1
2

†

, 2, , 1,
1

l

l l
i i

l

l

l l K
l

K

i S


 
  


C A    (B.21) 

  
    

   
 

 
 1

†
1

2

.
1

l

l l
S S

l

l

l l K
l

K








 



C A 


 (B.22) 

With (B.9), (B.10) and (B.20)-(B.22), we have 

 
     2( 1) 2

2
1 1l

s

l s S s   


  P  and  

  1

2
l

s

l S s


 Q , 1, ,s S  , 

where  
 

 
  1l l

l l

K K
   . Then by (B.8), we have 

 
 

 
 

 
 

1 1
1

1

2 2 2

1 1 , 1, , ,l l l
s S

Sl l ls s S  
  

  
    σ σ σ     (B.23) 

where    2( 1) 21 1s S s       ,  
 

 
  1l l

l l

K K
   . 

When 1l  ,  
 

 
 

 
 

1

1
l l l

s s S

l l l




  
  σ Q σ   and then 

 
 

 
 

1

2

11

2
l l

s S

l S ls 
  

 
 σ σ   for 1, ,s S  . Similarly, when l L , 

 
 

 
 

1
1

1

2 2
l l

s

l l 



 
  σ σ   for 1, ,s S  .  

This concludes the proof of Theorem 4.                               ■ 
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