Skip to main content
Log in

CP-based MIMO OFDM radar IRCI free range reconstruction using real orthogonal designs

基于循环前缀的同频MIMO OFDM雷达无自扰距离重构算法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we propose a range reconstruction method for a frequency-band shared multipleinput multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) radar with sufficient cyclic prefix (CP) by using real orthogonal designs. Compared with the application of complex orthogonal designs in our previous work, the application of real orthogonal designs can significantly reduce the number of the all-zero-valued pulses in a coherent processing interval (CPI) for each transmitter and increase the efficiency of radar transmitters. Meanwhile, it still maintains the advantages of full spatial diversity without inter-range-cell interference (IRCI). We also apply the rate-1 real orthogonal designs for different numbers of transmitters and pulses for range reconstruction without any idleness of radar transmitters. Simulation results are presented to illustrate the performances of the OFDM pulse design and the CP-based MIMO OFDM radar using real orthogonal designs.

摘要

创新点

  1. 1.

    在共享频谱的情况下, 提出了基于循环前缀的MIMO OFDM 雷达回波模型。

  2. 2.

    提出了 MIMO OFDM 雷达联合脉冲压缩和脉冲相干积累算法, 当循环前缀长度充足时, 在不同发射信号共享频谱的情况下, 实现不同发射信号频域子带的正交性, 并实现无距离旁瓣脉冲压缩。

  3. 3.

    结合实正交设计, 提出了基于 Paraunitary 滤波器组和迭代 Clipping 加滤波的两种 MIMO OFDM 波形设计算法, 实现了任意长度 MIMO OFDM 发射脉冲的联合脉冲压缩和脉冲相干积累, 并保持了不同发射信号的无互扰和无距离旁瓣脉冲压缩。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal Process Mag, 2007, 24: 106–114

    Article  Google Scholar 

  2. Li J, Stoica P. MIMO Radar Signal Processing. New York: Wiley Online Library, 2008

    Book  Google Scholar 

  3. Wu X H, Kishk A A, Glisson A W. MIMO-OFDM radar for direction estimation. IET Radar Sonar Nav, 2010, 4: 28–36

    Article  Google Scholar 

  4. Cao Y-H, Xia X-G, Wang S-H. IRCI free co-located MIMO radar based on sufficient cyclic prefix OFDM waveforms. IEEE Trans Aerosp Electron Syst, 2015, 51: 2107–2120

    Article  Google Scholar 

  5. Cao Y-H, Xia X-G. IRCI-free MIMO-OFDM SAR using circularly shifted Zadoff-Chu sequences. IEEE Geosci Remote Sens Lett, 2015, 12: 1126–1130

    Article  Google Scholar 

  6. Meng C Z, Xu J, Xia X-G, et al. MIMO-SAR waveforms separation based on virtual polarization filter. Sci China Inf Sci, 2015, 58: 042301

    Google Scholar 

  7. He F, Chen Q, Dong Z, et al. Modeling and high-precision processing of the azimuth shift variation for spaceborne HRWS SAR. Sci China Inf Sci, 2013, 56: 102304

    Google Scholar 

  8. Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas. IEEE Signal Process Mag, 2008, 25: 116–129

    Article  Google Scholar 

  9. Chernyak V. Multisite radar systems composed of MIMO radars. IEEE Aerospace Electron Syst Mag, 2014, 29: 28–37

    Article  Google Scholar 

  10. Xu J, Dai X-Z, Xia X-G, et al. Optimizations of multisite radar system with MIMO radars for target detection. IEEE Trans Aerospace Electron Syst, 2011, 47: 2329–2343

    Article  Google Scholar 

  11. Antonio G S, Fuhrmann D R, Robey F C. MIMO radar ambiguity functions. IEEE J Sel Topics Signal Process, 2007, 1: 167–177

    Article  Google Scholar 

  12. Somaini U. Binary sequences with good autocorrelation and cross correlation properties. IEEE Trans Aerospace Electron Syst, 1975, 11: 1226–1231

    Article  Google Scholar 

  13. Deng H. Synthesis of binary sequences with good autocorrelation and crosscorrelation properties by simulated annealing. IEEE Trans Aerospace Electron Syst, 1996, 32: 98–107

    Article  Google Scholar 

  14. Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Trans Signal Process, 2004, 52: 3126–3135

    Article  Google Scholar 

  15. Khan H A, Zhang Y Y, Ji C L, et al. Optimizing polyphase sequences for orthogonal netted radar. IEEE Signal Process Lett, 2006, 13: 589–592

    Article  Google Scholar 

  16. He H, Stoica P, Li J. Designing unimodular sequence sets with good correlations-Including an application to MIMO radar. IEEE Trans Signal Process, 2009, 57: 4391–4405

    Article  MathSciNet  Google Scholar 

  17. Song X F, Zhou S L, Willett P. Reducing the waveform cross correlation of MIMO radar with space-time coding. IEEE Trans Signal Process, 2010, 58: 4213–4224

    Article  MathSciNet  Google Scholar 

  18. Xu L, Liang Q L. Zero correlation zone sequence pair sets for MIMO radar. IEEE Trans Aerospace Electron Syst, 2012, 48: 2100–2113

    Article  Google Scholar 

  19. Jin Y, Wang H, Jiang W, et al. Complementary-based chaotic phase-coded waveforms design for MIMO radar. IET Radar Sonar Nav, 2013, 7: 371–382

    Article  Google Scholar 

  20. Xia X-G, Zhang T X, Kong L J. MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix. IEEE Trans Aerospace Electron Syst, 2015, 51: 2276–2293

    Article  Google Scholar 

  21. Zhang T X, Xia X-G. OFDM synthetic aperture radar imaging with sufficient cyclic prefix. IEEE Trans Geosci Remote Sens, 2015, 53: 394–404

    Article  Google Scholar 

  22. Zhang T X, Xia X-G, Kong L J. IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse. IEEE Trans Signal Process, 2014, 62: 4748–4759

    Article  MathSciNet  Google Scholar 

  23. Kim J-H, Younis M, Moreira A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR. IEEE Geosci Remote Sens Lett, 2013, 10: 568–572

    Article  Google Scholar 

  24. Sit Y L, Sturm C, Baier J, et al. Direction of arrival estimation using the MUSIC algorithm for a MIMO OFDM radar. In: Proceedings of IEEE Radar Conference, Atlanta, 2012. 0226–0229

    Google Scholar 

  25. Sen S, Nehorai A. OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking. IEEE Trans Signal Process, 2010, 58: 3152–3162

    Article  MathSciNet  Google Scholar 

  26. Lu K J, Fu S L, Xia X-G. Closed-form designs of complex orthogonal space-time block codes of rates (k + 1)/(2k) for 2k - 1 or 2k transmit antennas. IEEE Trans Inf Theory, 2005, 51: 4340–4347

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang X-B. Orthogonal designs with maximal rates. IEEE Trans Inf Theory, 2003, 49: 2468–2503

    Article  MathSciNet  MATH  Google Scholar 

  28. Geramita A V, Seberry J. Orthogonal Designs, Quadratic Forms and Hadamard Matrices, Lecture Notes in Pure and Applied Mathematics, Vol. 43. New York and Basel: Marcel Dekker, 1979

    MATH  Google Scholar 

  29. Armstrong J. Peak-to-average power reduction for OFDMby repeated clipping and frequency domain filtering. Electron Lett, 2002, 38: 246–247

    Article  Google Scholar 

  30. Han S H, Lee J H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wirel Commun, 2005, 12: 56–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Xia, XG. & Kong, L. CP-based MIMO OFDM radar IRCI free range reconstruction using real orthogonal designs. Sci. China Inf. Sci. 60, 022301 (2017). https://doi.org/10.1007/s11432-015-0979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-0979-5

Keywords

关键词

Navigation