Skip to main content
Log in

Construction of a genetic conditional learning system in Escherichia coli

大肠杆菌中条件学习系统构建

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Currently, there are a lot of man-made biomolecular computing systems. However, it is rare to see man-made biomolecular intelligence system. Learning ability is one of the basic abilities of intelligence. Many organisms have learning ability naturally. In this paper, we have successfully designed, constructed, and tested a genetic conditional learning system in the bacterium Escherichia coli. The system can recognize ‘bad guy’ signal with the help of ‘study’ signal. The function was realized by combining biomolecular AND gate and memory inverter. The AND gate used riboswitch as computation tool, and the memory inverter used Cre recombinase. Flow cytometry was used to verify the function of the system. This study is an attempt of constructing manmade biomolecular intelligence system. The system may lead to new applications for biomolecular computing, artificial intelligence, and biotherapy.

摘要

本文通过联用与门和记忆反相器两种生物分子计算部件, 在大肠杆菌内构建了一个条件学习系统。该系统能在“学习”信号的帮助下认识“坏人”。初始状态下, 该系统会欢迎“坏人”( 发出黄色荧光) ; 当“学习”信号和“坏人”同时出现时, 系统产生记忆; 之后, 系统不再欢迎“坏人”。本项研究是人工构建生物分子智能系统的一次有益尝试。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarpeshkar R. Analog synthetic biology. Philos Trans A Math Phys Eng Sci, 2014, 372: 20130110

    Article  Google Scholar 

  2. Benenson Y. Biomolecular computing systems: principles, progress and potential. Nat Rev Genet, 2012, 13: 455–468

    Article  Google Scholar 

  3. Fang X W, Lai X J. DNA-chip-based dynamic broadcast encryption scheme with constant-size ciphertexts and decryption keys. Sci China Inf Sci, 2014, 57: 092110

    MathSciNet  Google Scholar 

  4. Chen M, Zhang L, Xu J. Distributed implementation of the genetic double-branch structure in Escherichia coli. Chin Sci Bull, 2014, 59: 4625–4630

    Article  Google Scholar 

  5. Burrill D R, Silver P A. Making cellular memories. Cell, 2010, 140: 13–18

    Article  Google Scholar 

  6. Inniss M C, Silver P A. Building synthetic memory. Curr Biol, 2013, 23: R812–R816

  7. Siuti P, Yazbek J, Lu T K. Engineering genetic circuits that compute and remember. Nat Protoc, 2014, 9: 1292–1300

    Article  Google Scholar 

  8. Purcell O, Lu T K. Synthetic analog and digital circuits for cellular computation and memory. Curr Opin Biotech, 2014, 29: 146–155

    Article  Google Scholar 

  9. Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia Coli. Nature, 2000, 403: 339–342

    Article  Google Scholar 

  10. Friedland A E, Lu T K, Wang X, et al. Synthetic gene networks that count. Science, 2009, 324: 1199–1202

    Article  Google Scholar 

  11. Bonnet J, Subsoontorn P, Endy D. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc Nat Acad Sci USA, 2012, 109: 8884–8889

    Article  Google Scholar 

  12. Tamsir A, Tabor J J, Voigt C A. Robust multicellular computing using genetically encoded nor gates and chemical ‘wires’. Nature, 2011, 469: 212–215

    Article  Google Scholar 

  13. Chen M, Zhang L, Xu J. Rational construction of a cellular memory inverter. Sci China Inf Sci, 2015, 58: 012105

  14. Fernando C T, Liekens A M L, Bingle L E H, et al. Molecular circuits for associative learning in single-celled organisms. J Roy Soc Interface, 2009, 6: 463–469

    Article  Google Scholar 

  15. Saigusa T, Tero A, Nakagaki T, et al. Amoebae anticipate periodic events. Phys Rev Lett, 2008, 100: 018101

    Article  Google Scholar 

  16. Isaacs F J, Dwyer D J, Ding CM, et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol, 2004, 22: 841–847

    Article  Google Scholar 

  17. Sternberg N, Hamilton D. Bacteriophage-P1 site-specific recombination. I. Recombination between LoxP sites. J Mol Biol, 1981, 150: 467–486

    Article  Google Scholar 

  18. Zhang Z W, Lutz B. Cre recombinase-mediated inversion using Lox66 and Lox71: method to introduce conditional point mutations into the creb-binding protein. Nucl Acids Res, 2002, 30: e90

    Article  Google Scholar 

  19. Anderson J C, Voigt C A, Arkin A P. Environmental signal integration by a modular and gate. Mol Syst Biol, 2007, 3: 133

    Article  Google Scholar 

  20. Wang B J, Kitney R I, Joly N, et al. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun, 2011, 2: 508

    Article  Google Scholar 

  21. Sipper M. The emergence of cellular computing. Computer, 1999, 32: 18–26

    Article  Google Scholar 

  22. Purnick P E M, Weiss R. The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol, 2009, 10: 410–422

    Article  Google Scholar 

  23. Sauro H M, Kim K H. Synthetic biology: it’s an analog world. Nature, 2013, 497: 572–573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Chen or Jin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Xu, J. Construction of a genetic conditional learning system in Escherichia coli . Sci. China Inf. Sci. 58, 1–6 (2015). https://doi.org/10.1007/s11432-015-5308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5308-8

Keywords

关键词

Navigation