Skip to main content
Log in

An integrative synchronization and imaging algorithm for GNSS-based BSAR

基于导航卫星的双基地合成孔径雷达同步与成像一体化方法

  • Research Paper
  • Special Focus on Bistatic Synthetic Aperture Radar Signal Processing
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we develop an integrative synchronization and imaging algorithm for bistatic synthetic aperture radar (BSAR) using Global Navigation Satellite Systems as transmitters and a fixed receiver. Due to the lack of a dedicated synchronization link, the usage of navigation signals and the system complexity, traditional synchronization and imaging solutions are not applicable for GNSS-based BSAR. To resolve this problem, this paper focuses on the integrative signal processing algorithm for GNSS-based BSAR. Firstly, to remove the effect of navigation signals, synchronization pre-processing is developed. Then the principle of measuring errors neutralization is theoretically proved by considering the geometric peculiarity of the system. Based on this principle, an integrative synchronization and imaging algorithm is proposed. Finally, the validity of the developed algorithm is confirmed by experimentally obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodriguez-Cassola M, Baumgartner S V, Krieger G, et al. Bistatic TerraSAR-X/F-SAR spaceborne-airborne SAR experiment: description, data processing, and results. IEEE Trans Geosci Remote Sens, 2010, 48: 781–794

    Article  Google Scholar 

  2. Walterscheid I, Espeter T, Brenner A R, et al. Bistatic SAR experiments with PAMIR and TerraSAR-X: setup, processing and image results. IEEE Trans Geosci Remote Sens, 2010, 48: 3268–3279

    Article  Google Scholar 

  3. Sanz-Marcos J, Lopez-Dekker P, Mallorqui J J, et al. SABRINA: a SAR bistatic receiver for interferometric applications. IEEE Geosci Remote Sens Lett, 2007, 4: 307–311

    Article  Google Scholar 

  4. Behner F, Reuter S. HITCHHIKER, Hybrid bistatic high resolution SAR experiment using a stationary receiver and TerraSAR-X. In: Proceedings of European Conference on Synthetic Aperture Radar (EUSAR), Aachen, 2010

    Google Scholar 

  5. Cherniakov M, Saini R, Zuo R, et al. Space-surface bistatic synthetic aperture radar with global navigation satellite system transmitter of opportunity-experimental results. IET Radar Sonar Navig, 2007, 1: 447–458

    Article  Google Scholar 

  6. Hu C, Long T, Zeng T. The possibility of isolated target 3-D position estimation and optimal receiver position determination in SS-BSAR. Sci China Ser-F: Inf Sci, 2008, 51: 1372–1383

    Article  Google Scholar 

  7. Antoniou M, Zeng Z, Liu F, et al. Experimental demonstration of passive BSAR imaging using navigation satellites and a fixed receiver. IEEE Geosci Remote Sens Lett, 2012, 9: 477–481

    Article  Google Scholar 

  8. Liu F, Antoniou M, Zeng Z, et al. Coherent change detection using passive GNSS-based BSAR: experimental proof of concept. IEEE Trans Geosci Remote Sens, 2013, 51: 4544–4555

    Article  Google Scholar 

  9. Antoniou M, Cherniakov M. GNSS-based bistatic SAR, a signal processing view. EURASIP J Adv Signal Process, 2013, 98: 1–16

    Google Scholar 

  10. Wang W. GPS-based time & phase synchronization processing for distributed SAR. IEEE Trans Aerosp Electron Syst, 2009, 45: 1040–1051

    Article  Google Scholar 

  11. Younis M, Metzig R, Krieger G. Performance prediction of a phase synchronization link for bistatic interferometric SAR system. IEEE Geosci Remote Sens Lett, 2006, 3: 429–433

    Article  Google Scholar 

  12. Espeter T, Walterscheid I, Klare J, et al. Progress of hybrid bistatic SAR: synchronization experiments and first imaging results. In: Proceedings of European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, 2008

    Google Scholar 

  13. Lopez-Dekkeren P, Mallorqui J J, Srra-Morales P, et al. Phase synchronization and Doppler centroid estimation in fixed receiver bistatic SAR systems. IEEE Trans Geosci Remote Sens, 2008, 46: 3459–3471

    Article  Google Scholar 

  14. Saini R, Zuo R, Cherniakov M. Problem of signal synchronization in space-surface bistatic synthetic aperture radar based on global navigation satellite emissions-experimental results. IET Radar Sonar Navig, 2010, 4: 110–126

    Article  Google Scholar 

  15. Zeng Z. Passive bistatic SAR with GNSS transmitter and a stationary receiver. Dissertation for Doctoral Degree. University of Birmingham, 2013

    Google Scholar 

  16. Qiu X, Hu D, Ding C. An improved NLCS algorithm with capability analysis for one-stationary BiSAR. IEEE Trans Geosci Remote Sens, 2008, 46: 3179–3186

    Article  Google Scholar 

  17. Geng X P, Hu Y H, Yan H H, et al. An improved imaging algorithm for fixed-receiver bistatic SAR. Sci China Inf Sci, 2010, 53: 1461–1469

    Article  Google Scholar 

  18. Zeng T, Liu F, Hu C, et al. Image formation algorithm for asymmetric bistatic SAR systems with a fixed receiver. IEEE Trans Geosci Remote Sens, 2012, 50: 4684–4698

    Article  Google Scholar 

  19. Zhang Q, Chang W, Li X. An integrative synchronization and imaging approach for bistatic spaceborne/stratospheric SAR with a fixed receiver. EURASIP J Adv Signal Process, 2013, 165: 1–16

    Google Scholar 

  20. Weib M. Synchronization of bistatic radar systems. In: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, 2004. 1750–1753

    Google Scholar 

  21. Krieger G, Younis M. Impact of oscillator noise in bistatic and multistatic SAR. IEEE Geosci Remote Sens Lett, 2006, 3: 424–428

    Article  Google Scholar 

  22. Krieger G, De Z F. Relativistic effects in bistatic SAR processing and system synchronization. In: Proceedings of European Conference on Synthetic Aperture Radar (EUSAR), Oberpfaffenhofen, 2012

    Google Scholar 

  23. Valencia E, Camps A, Marchan-Hernandez I, et al. Experimental determination of the sea correlation time using GNSS-R coherent data. IEEE Geosci Remote Sens Lett, 2010, 7: 675–679

    Article  Google Scholar 

  24. Hoots F R, Roehrich R L. Models for propagation of NORAD element sets. In: Aerospace Defense Center, Peterson AFB, CO, Spacetrack Report No. 3, 1980

    Google Scholar 

  25. Rutman J, Walls F L. Characterization of frequency stability in precision frequency sources. Proc IEEE, 1991, 79: 952–960

    Article  Google Scholar 

  26. Liu F, Antoniou M, Zeng Z, et al. Point spread function analysis for BSAR with GNSS transmitter and long dwell times: theory and experimental confirmation. IEEE Geosci Remote Sens Lett, 2013, 10: 781–785

    Article  Google Scholar 

  27. Ulander L M H, Hellsten H, Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans Aerosp Electron Syst, 2003, 39: 760–776

    Article  Google Scholar 

  28. Rodriguez-Cassola M, Prats P, Krieger G, et al. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations. IEEE Trans Aerosp Electron Syst, 2011, 47: 2949–2966

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiLei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chang, W., Zeng, Z. et al. An integrative synchronization and imaging algorithm for GNSS-based BSAR. Sci. China Inf. Sci. 58, 1–15 (2015). https://doi.org/10.1007/s11432-015-5319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5319-5

Keywords

关键词

Navigation