Skip to main content
Log in

Performance of an M-QAM full-duplex wireless system with a nonlinear amplifier

非线性功放对M-QAM全双工无线通信的影响分析

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The effect of amplifier nonlinearity is analyzed for M-QAM full-duplex communications in additive white Gaussian noise channels. Two classical memoryless nonlinear amplifier models, i.e., a traveling-wave tube amplifier and a solid-state power amplifier, are considered. An analytical expression for the bit error ratio is derived using a characteristic function and numerical integration. Theoretical results show perfect agreement with those obtained by simulation. The analytical results could be used to evaluate the degradation in performance of an M-QAM full-duplex system caused by amplifier nonlinearity, and will be helpful in finding the optimal static operating point of an amplifier.

摘要

创新点

本文分析了非线性功放对M-QAM全双工无线通信性能的影响; 采用行波管功放(TWTA)模型和固态功放(SSPA)模型, 并通过特征函数和数值积分的方法求出M-QAM全双工无线通信误码率的表达式, 最终用仿真验证了理论分析的正确性。本文结论可用于估算M-QAM全双工无线通信中非线性功放带来的信噪比损失, 以及为非线性功放选择最佳的静态工作点。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ren P Y, Wang Y C, Du Q H. CAD-MAC: a channel-aggregation diversity based MAC protocol for spectrum and energy efficient cognitive ad hoc networks. IEEE J Sel Areas Commun, 2014; 32: 237–250

    Article  Google Scholar 

  2. Wu G, Ren P Y, Du Q H. Recall-based dynamic spectrum auction with the protection of primary users. IEEE J Sel Areas Commun, 2012; 30: 2070–2081

    Article  Google Scholar 

  3. Hong S, Brand J, Jung C, et al. Applications of self-interference cancellation in 5G and beyond. IEEE Commun Mag, 2014; 52: 114–121

    Article  Google Scholar 

  4. Zhang D D, Wang X, Zhang Z S. Key techniques research on full-duplex wireless communications (in Chinese). Sci Sin Inform, 2014; 44: 951–964

    Google Scholar 

  5. Jain M, Choi J I, Kim T, et al. Practical, real-time, full duplex wireless. In: Proceedings of 17th Annual International Conference on Mobile Computing and Networking, Las Vegas, 2011. 301–312

    Google Scholar 

  6. Choi J Y, Hur M S, Suh Y W, et al. Interference cancellation techniques for digital on-channel repeaters in T-DMB system. IEEE Trans Broadcast, 2011; 57: 46–56

    Article  Google Scholar 

  7. Lee Y J, Lee J B, Park S I, et al. Feedback cancellation for T-DMB repeaters based on frequency-domain channel estimation. IEEE Trans Broadcast, 2011; 57: 114–120

    Article  Google Scholar 

  8. Duarte M, Sabharwal A. Full-duplex wireless communications using off-the-shelf radios: feasibility and first results. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2010. 1558–1562

    Google Scholar 

  9. Duarte M, Sabharwal A, Aggarwal V, et al. Design and characterization of a full-duplex multi-antenna system for WiFi networks. IEEE Trans Veh Technol, 2014; 63: 1160–1177

    Article  Google Scholar 

  10. White C R, Rebeiz G M. Single- and dual-polarized tunable slotring antennas. IEEE Trans Antenn Propag, 2009; 57: 19–26

    Article  Google Scholar 

  11. Elsherbini A, Sarabandi K. Dual-polarized coupled sectorial loop antennas for UWB applications. IEEE Antenn Wirel Propag Lett, 2011; 10: 75–78

    Article  Google Scholar 

  12. Guo Y X, Luk K M. Dual-polarized dielectric resonator antennas. IEEE Trans Antenn Propag, 2003; 51: 1120–1124

    Article  Google Scholar 

  13. Korpi D, Riihonen T, Syrjala V, et al. Full-duplex transceiver system calculations: analysis of ADC and linearity challenges. IEEE Trans Wirel Commun, 2014; 13: 3821–3836

    Article  Google Scholar 

  14. Bharadia D, McMilin E, Katti S. Full duplex radios. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. New York: ACM, 2013. 375–386

    Chapter  Google Scholar 

  15. Duarte M, Dick C, Sabharwal A. Experiment-driven characterization of full-duplex wireless systems. IEEE Trans Wirel Commun, 2012; 11: 4296–4307

    Article  Google Scholar 

  16. Anttila L, Korpi D, Syrjala V, et al. Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013

    Google Scholar 

  17. Ahmed E, Eltawil A M, Sabharwal A. Rate gain region and design tradeoffs for full-duplex wireless communications. IEEE Trans Wirel Commun, 2013; 12: 3556–3565

    Article  Google Scholar 

  18. Costa E, Pupolin S. M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Trans Wirel Commun, 2002; 50: 462–472

    Article  Google Scholar 

  19. Proakis J. Digital Communications. 4th ed. New York: McGraw-Hill, 2001. 278–282

    Google Scholar 

  20. Su W M, Gu H, Ni J L, et al. Performance analysis of MVDR algorithm in the presence of amplitude and phase errors. IEEE Antenn Wirel Propag Lett, 2001; 49: 1875–1877

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxi Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Ma, W., Shao, S. et al. Performance of an M-QAM full-duplex wireless system with a nonlinear amplifier. Sci. China Inf. Sci. 59, 102307 (2016). https://doi.org/10.1007/s11432-015-5370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-5370-2

Keywords

关键词

Navigation