Skip to main content
Log in

Adaptive multiple video sensors fusion based on decentralized Kalman filter and sensor confidence

基于分散式卡尔曼滤波和传感器可信度的自适应视频传感器融合

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The fusion of multiple video sensors provides an effective way to improve the robustness and accuracy of video surveillance systems. In this paper, an adaptive fusion method based on a decentralized Kalman filter (DKF) and sensor confidence is presented for the fusion of multiple video sensors. The adaptive scheme is one of the approaches used for preventing the divergence problem of the filter when statistical values of the measurement noises of the system models are not available. By introducing the sensor confidence, we can adaptively adjust the measurement noise covariance matrix of the local DKFs and thus, determine the weight of each sensor more correctly in the fusion procedure. Also, the DKF applied here can make full use of redundant tracking data from multiple video sensors and give more accurate fusion results in an efficient manner. Finally, the fusion result with improved accuracy is obtained. Experimental results show that the proposed adaptive decentralized Kalman filter fusion (ADKFF) method works well in the case of real-world video sequences and exhibits more promising performance than single sensors and comparative fusion methods.

创新点

针对已有的图像融合算法难以在视频传感器有视角、距离、亮度等较大变化的情况下进行融合的问题,本文提出了一种基于分散式卡尔曼滤波的自适应视频传感器融合算法。在融合过程中,该算法采用传感器可信度自动调节局部卡尔曼滤波器的测量误差协方差矩阵,自适应地为待融合传感器分配更加准确的权重。此外,将分散式卡尔曼滤波框架引入到视频传感器融合中,使得来自不同视频传感器冗余的跟踪数据得到充分的利用。ADKFF算法可以有效减少因不正确的目标跟踪和位置映射引起的目标位置误差。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghajan H, Cavallaro A. Multi-Camera Networks: Principles and Applications. Pittsburgh: Academic Press, 2009

    Google Scholar 

  2. Jia Y. Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty: a predictive approach. IEEE Trans Automat Contr, 2003, 48: 1413–1416

    Article  MathSciNet  Google Scholar 

  3. Snidaro L, Visentini L, Foresti G L. Intelligent Video Surveillance: Systems and Technology. Boca Raton: CRC Press, 2009. 363–388

    Google Scholar 

  4. Li B, Yan W. A sensor fusion framework using multiple particle filters for video-based navigation. IEEE Trans Intell Trans Syst, 2010, 11: 348–358

    Article  Google Scholar 

  5. Denman S, Lamb T, Fookes C, et al. Multi-spectral fusion for surveillance systems. Comput Electr Eng, 2010, 36: 643–663

    Article  MATH  Google Scholar 

  6. Loreto S, Jose M M, Ander A, et al. RGB-D, laser and thermal sensor fusion for people following in a mobile robot. Int J Adv Robot Syst, 2013, 10: 271

    Article  Google Scholar 

  7. Federico C. A review of data fusion techniques. Sci World J, 2013, 2013: 704504

    Google Scholar 

  8. Christoph S, Fernando P L, Marco K. Information fusion for automotive applications—an overview. Inform Fusion, 2011, 12: 244–252

    Article  Google Scholar 

  9. Chan A L, Schnelle S R. Fusing concurrent visible and infrared videos for improved tracking performance. Opt Eng, 2013, 52: 017004

    Article  Google Scholar 

  10. Jia Y. Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-arying motion. IEEE Trans Contr Syst Tech, 2000, 8: 554–569

    Article  Google Scholar 

  11. Snidaro L, Visentini I, Foresti G L. Fusing multiple video sensors for surveillance. ACM Trans Multim Comput Commun Appl, 2012, 8: 7

    Article  Google Scholar 

  12. Chong C Y, Mori S. Optimal fusion for non-zero process noise. In: Proceedings of the 16th International Conference on Information Fusion, Istanbul, 2013. 365–371

    Google Scholar 

  13. Xu J, Song E B, Luo Y T, et al. Optimal distributed Kalman filtering fusion algorithm without invertibility of estimation error and sensor noise covariances. IEEE Signal Process Lett, 2012, 19: 55–58

    Article  Google Scholar 

  14. Li Z G, Tian X Y. The application of federated Kalman filtering in the information fusion technique. In: Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Harbin, 2011, 2: 1228–1230

    Google Scholar 

  15. Zhang H, Sang H S, Shen X B. Adaptive federated Kalman filtering attitude estimation algorithm for double-FOV star sensor. J Comput Inf Syst, 2010, 6: 3201–3208

    Google Scholar 

  16. Qi W J, Zhang P, Deng Z L. Weighted fusion robust steady-state Kalman filters for multisensor system with uncertain noise variances. J Appl Math, 2014, 2014: 369252

    Article  Google Scholar 

  17. Julier S J, Uhlmann J K. General decentralized data fusion with covariance intersection. In: Handbook of Multisensor Data Fusion. Boca Raton: CRC Press, 2009. 319–342

    Google Scholar 

  18. Markus S S, Kristian K. Performance analysis of decentralized Kalman filters under communication constraints. J Adv Inf Fusion, 2007, 2: 65–75

    Google Scholar 

  19. Deng Z L, Zhang P, Qi W J, et al. Sequential covariance intersection fusion Kalman filter. Inform Sciences, 2012, 189: 293–309

    Article  MathSciNet  MATH  Google Scholar 

  20. Deng Z L, Zhang P, Qi W J, et al. The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers. Inform Fusion, 2013, 14: 177–185

    Article  Google Scholar 

  21. Ibarra-Bonilla M N, Escamilla-Ambrosio P J, Ramirez-Cortes J M, et al. Pedestrian dead reckoning with attitude estimation using a fuzzy logic tuned adaptive kalman filter. In: Proceedings of the IEEE 4th Latin American Symposium on Circuits and Systems, Cusco, 2013. 1–4

    Google Scholar 

  22. Li J, Lei Y H, Cai Y Z, et al. Multi-sensor data fusion algorithm based on fuzzy adaptive Kalman filter. In: Proceedings of the 32nd Chinese Control Conference, Xi’an, 2013. 4523–4527

    Google Scholar 

  23. Correia P L, Pereira F. Objective evaluation of video segmentation quality. IEEE Trans Image Process, 2003, 12: 186–200

    Article  Google Scholar 

  24. Jia Y. General solution to diagonal model matching control of multi-output-delay systems and its applications in adaptive scheme. Progress Nat Sci, 2009, 19: 79–90

    Article  MathSciNet  Google Scholar 

  25. Xu T, Cui P. Data fusion of integrated navigation system based on confidence weighted. Acta Aeronaut Et Astronaut Sin, 2007, 28: 1389–1394

    Google Scholar 

  26. Snidaro L, Foresti G L, Niu R X, et al. Sensor fusion for video surveillance. In: Proceedings of the 7th International Conference on Information Fusion, Stockholm, 2004, 2: 739–746

    Google Scholar 

  27. Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. 2nd ed. New York: Cambridge Univercity Press, 2004

    Book  MATH  Google Scholar 

  28. Shen X J, Luo Y T, Zhu Y M, et al. Globally optimal distributed Kalman filtering fusion. Sci China Inf Sci, 2012, 55: 512–529

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program) (Grant No. 2012CB821206) and National Natural Science Foundation of China (Grant Nos. 61320106006, 61532006, 61502042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Du, J., Zhu, S. et al. Adaptive multiple video sensors fusion based on decentralized Kalman filter and sensor confidence. Sci. China Inf. Sci. 60, 062102 (2017). https://doi.org/10.1007/s11432-015-5450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-5450-3

Keywords

关键词

Navigation