Skip to main content
Log in

Channel capacity investigation of a linear massive MIMO system using spherical wave model in LOS scenarios

直射场景下大规模线性多天线系统基于球面波模型的信道容量研究

  • Research Paper
  • Special Focus on 5G Wireless Communication Networks
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Massive multiple-input multiple-output (MIMO) is a key technology for the 5th generation (5G) of wireless communication systems. The traditional plane wave channel model (PWM) is often not suitable for the large antenna structure, and in certain cases should be replaced by the more accurate spherical wave model (SWM). By using the spherical wave characterization method, this paper investigates the channel capacity performance of a linear massive MIMO system in line-of-sight (LOS) scenarios. Two types of access settings, the point to point (PTP) system and multi-user (MU) system, are considered. In the PTP setting, a geometrical optimization is performed to obtain configurations that are able to generate a full rank channel matrix for a linear massive MIMO system, which yields full spatial diversity even in LOS scenarios. Compared with the approximate and commonly applied rank-1 PWM, this is very useful for fixed wireless access and radio relay systems requiring high throughput. For the MU case, we compare the eigenvalue distributions of the LOS channels using the plane wave and spherical wave characterization method, and sum rate results are obtained by Monte Carlo simulations. The results show that MU systems using the more realistic and accurate SWM can achieve a higher sum rate than results from the PWM. This is beneficial and informative when designing massive MIMO wireless networks.

摘要

摘要

大规模多天线是未来第五代移动通信系统的关键技术之一,当天线尺寸较大时,传统的球面波信道模型并不适合用于准确的描述传播环境。本文使用更为准确的球面波信道模型,研究了直射场景下大规模线性多天线系统(点对点接入和多用户接入两种架构)的信道容量特征。在点对点接入架构中,本文提出了一种基于位置的系统优化方式,相对于平面波信道模型获得的信道秩为1的结果,该优化方式可以让多天线系统在直射场景下获得信道满秩,从而获得全部空间分集增益;在多用户接入架构下,本文比较了球面波和平面波信道模型下的信道的特征值分布特征,通过使用蒙特卡洛仿真方法研究了系统的信道和速率,仿真结果表明,使用球面波信道模型的信道和速率高于平面波信道模型的信道和速率。

创新点

本文使用更为准确的球面波信道模型,研究了直射场景下大规模线性多天线系统(点对点接入和多用户接入两种架构)的信道容量特征。在点对点接入架构中,本文提出了一种基于位置的系统优化方式,相对于平面波信道模型获得的信道秩为1的结果,该优化方式可以让多天线系统在直射场景下获得信道满秩,从而获得全部空间分集增益;在多用户接入架构下,本文比较了球面波和平面波信道模型下的信道的特征值分布特征,通过使用蒙特卡洛仿真方法研究了系统的信道和速率,仿真结果表明,使用球面波信道模型的信道和速率高于平面波信道模型的信道和速率。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60

    Article  Google Scholar 

  2. Larsson E, Edfors O, Tufvesson F, et al. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 52: 186–195

    Article  Google Scholar 

  3. Ngo H Q, Larsson E, Marzetta T. Energy and spectral efficiency of very large multiuser MIMO Systems. IEEE Trans Commun, 2013, 61: 1436–1449

    Article  Google Scholar 

  4. Ma Z, Zhang Z Q, Ding Z G, et al. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci China Inf Sci, 2015, 57: 041301

    Google Scholar 

  5. Wu S, Wang C X, Haas H, et al. A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans Wirel Commun, 2015, 14: 1434–1446

    Article  Google Scholar 

  6. Wu S, Wang C X, Aggoune E-H, et al. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels. IEEE J Sel Area Commun, 2014, 32: 1207–1218

    Article  Google Scholar 

  7. Ngo H Q, Larsson E, Marzetta T. Aspects of favorable propagation in massive MIMO. In: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), Bristol, 2014. 76–80

    Google Scholar 

  8. Xing C W, Ma S D, Fei Z S, et al. A general robust linear transceiver design for multi-hop amplify-and-forward MIMO relaying systems. IEEE Trans Signal Process, 2013, 61: 1196–1209

    Article  MathSciNet  Google Scholar 

  9. Bohagen F, Orten P, Oien G. Construction and capacity analysis of high-rank line-of-sight MIMO channels. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, 2005. 432–437

    Google Scholar 

  10. Bohagen F, Orten P, Oien G. Design of optimal high-rank line-of-sight MIMO channels. IEEE Trans Wirel Commun, 2007, 6: 1420–1425

    Article  Google Scholar 

  11. Bohagen F, Orten P, Oien G. On spherical vs. plane wave modeling of line-of-sight MIMO channels. IEEE Trans Commun, 2009, 57: 841–849

    Google Scholar 

  12. Popovski P, Braun V, Ren Z. Deliverable D1.1 Scenarios, requirements and KPIs for 5G mobile and wireless system. Mobile and wireless communications Enablers for the Twenty-twenty Information Society. Technical Report. 2013

    Google Scholar 

  13. Rappaport T, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5g cellular: It will work! IEEE Access, 2013, 1: 335–349

    Article  Google Scholar 

  14. Hoydis J, Hosseini K, Brink S T, et al. Making smart use of excess antennas: massive MIMO, small cells, and TDD. BELL Labs Tech J, 2013, 18: 5–21

    Article  Google Scholar 

  15. Rade L, Westergren B. Mathematics Handbook for Science and Engineering. Berlin/New York: Springer Lund (Sweden), 2004

    Book  MATH  Google Scholar 

  16. Haustein T, Kruger U. Smart geometrical antenna design exploiting the los component to enhance a MIMO system based on rayleigh-fading in indoor scenarios. In: Proceedings of the IEEE 14th International Symposium on Personal, Indoor and Mobile Radio Communications, Beijing, 2003. 1144–1148

    Google Scholar 

  17. Tse D, Viswanath P. Fundamentals of Wireless Communication. New York: Cambridge University Press, 2005

    Book  MATH  Google Scholar 

  18. Capps C. Near field or far field? EDN, 2001. 95–101

    Google Scholar 

  19. Liu L, Matolak D W, Tao C, et al. Far region boundary definition of linear massive MIMO antenna arrays. In: Proceedings of the 82nd IEEE Vehicular Technology Conference (VTC2015-Fall), Boston, 2015. 1–6

    Google Scholar 

  20. Chen S Z, Zhao J. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun Mag, 2014, 52: 36–43

    Article  Google Scholar 

  21. Tulino A M, Verdú S. Random matrix theory and wireless communications. Found Trends Commun Inf Theory, 2004, 1: 1–182. http://dx.doi.org/10.1561/0100000001

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Matolak, D.W., Tao, C. et al. Channel capacity investigation of a linear massive MIMO system using spherical wave model in LOS scenarios. Sci. China Inf. Sci. 59, 1–15 (2016). https://doi.org/10.1007/s11432-015-5512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5512-6

Keywords

Keywords

关键词

Navigation