Skip to main content
Log in

A CADe system for nodule detection in thoracic CT images based on artificial neural network

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Lung cancer has been the leading cause of cancer-related deaths in 2015 in United States. Early detection of lung nodules will undoubtedly increase the five-year survival rate for lung cancer according to prior studies. In this paper, we propose a novel rating method based on geometrical and statistical features to extract initial nodule candidates and an artificial neural network approach to the detection of lung nodules. The novel method is solely based on 3D distribution of neighboring voxels instead of user-specified features. During initial candidates detection, we combine organized region properties calculated from connected component analysis with corresponding voxel value distributions from statistical analysis to reduce false positives while retaining true nodules. Then we devise multiple artificial neural networks (ANNs) trained from massive voxel neighbor sampling of different types of nodules and organize the outputs using a 3D scoring method to identify final nodules. The experiments on 107 CT cases with 252 nodules in LIDC-IDRI data sets have shown that our new method achieves sensitivity of 89.4% while reducing the false positives to 2.0 per case. Our comprehensive experiments have demonstrated our system would be of great assistance for diagnosis of lung nodules in clinical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel R L, Miller K D, Jemal A. Cancer statistics, 2015. CA-Cancer J Clin, 2015, 65: 5–29

    Article  Google Scholar 

  2. El-Baz A, Suri J S. Lung Imaging and Computer Aided Diagnosis. Boca Raton: CRC Press, 2011

    Google Scholar 

  3. van Ginneken B, Armato S G, de Hoop B, et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Med Image Anal, 2010, 14: 707–722

    Article  Google Scholar 

  4. El-Baz A, Beache G M, Gimel’farb G, et al. Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imag, 2013, 2013: 942353

    Google Scholar 

  5. Ukil S, Reinhardt J M. Anatomy-guided lung lobe segmentation in X-ray CT images. IEEE Trans Med Imag, 2009, 28: 202–214

    Article  Google Scholar 

  6. van Rikxoort E M, de Hoop B, van de Vorst S, et al. Automatic segmentation of pulmonary segments from volumetric chest CT scans. IEEE Trans Med Imag, 2009, 28: 621–630

    Article  Google Scholar 

  7. Gao Q, Wang S J, Zhao D, et al. Accurate lung segmentation for X-ray CT images. In: Proceedings of the 3rd International Conference on Natural Computation (ICNC 2007), Haikou, 2007. 2: 275–279

    Chapter  Google Scholar 

  8. Itai Y, Kim H, Ishikawa S, et al. Automatic segmentation of lung areas based on SNAKES and extraction of abnormal areas. In: Proceedings of the 17th IEEE International Conference on Tools With Artificial Intelligence (ICTAI’05), Tokyo, 2005. 5: 381

    Google Scholar 

  9. Silveira M, Nascimento J, Marques J. Automatic segmentation of the lungs using robust level sets. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, 2007. 4414–4417

    Google Scholar 

  10. Shih-Chung B L, Freedman M T, Lin J S, et al. Automatic lung nodule detection using profile matching and backpropagation neural network techniques. J Digit Imag, 1993, 6: 48–54

    Article  Google Scholar 

  11. Mao F, Qian W, Gaviria J, et al. Fragmentary window filtering for multiscale lung nodule detection: preliminary study. Acad Radiol, 1998, 5: 306–311

    Article  Google Scholar 

  12. Ko J P, Betke M. Chest CT: automated nodule detection and assessment of change over time — preliminary experience 1. Radiology, 2001, 218: 267–273

    Article  Google Scholar 

  13. Awai K, Murao K, Ozawa A, et al. Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radiologists’ detection performance 1. Radiology, 2004, 230: 347–352

    Article  Google Scholar 

  14. Yamada N, Kubo M, Kawata Y, et al. ROI extraction of chest CT images using adaptive opening filter. In: Proceedings of SPIE Medical Imaging 2003, San Diego, 2003. 869–876

    Chapter  Google Scholar 

  15. Saita S, Oda T, Kubo M, et al. Nodule detection algorithm based on multislice CT images for lung cancer screening. In: Proceedings of SPIE Medical Imaging 2004, San Diego, 2004. 1083–1090

    Chapter  Google Scholar 

  16. Brown M S, McNitt-Gray M F, Goldin J G, et al. Patient-specific models for lung nodule detection and surveillance in CT images. IEEE Trans Med Imag, 2001, 20: 1242–1250

    Article  Google Scholar 

  17. Ye X, Lin X, Dehmeshki J, et al. Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans Bio-Med Eng, 2009, 56: 1810–1820

    Article  Google Scholar 

  18. Riccardi A, Petkov T S, Ferri G, et al. Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med Phys, 2011, 38: 1962–1971

    Article  Google Scholar 

  19. Gurcan M N, Sahiner B, Petrick N, et al. Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys, 2002, 29: 2552–2558

    Article  Google Scholar 

  20. Fetita C I, Prêteux F, Beigelman-Aubry C, et al. 3D automated lung nodule segmentation in HRCT. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, Montreal, 2003. 626–634

    Google Scholar 

  21. Tanino M, Takizawa H, Yamamoto S, et al. A detection method of ground glass opacities in chest X-ray CT images using automatic clustering techniques. In: Proceedings of SPIE Medical Imaging 2003, San Diego, 2003. 1728–1737

    Chapter  Google Scholar 

  22. Han H, Li L, Han F, et al. Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE J Biomed Health, 2015, 19: 648–659

    Article  Google Scholar 

  23. Shen W, Zhou M, Yang F, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recogn, 2016, 61: 663–673

    Article  Google Scholar 

  24. Cheng J Z, Ni D, Chou Y H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep, 2016, 6: 24454

    Article  Google Scholar 

  25. Ginneken B V, Setio A A A, Jacobs C, et al. Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: Proceedings of IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, 2015. 286–289

    Google Scholar 

  26. Lu L, Tan Y, Schwartz L H, et al. Hybrid detection of lung nodules on CT scan images. Med Phys, 2015, 42: 5042–5054

    Article  Google Scholar 

  27. Colin J, van Rikxoort E M, Keelin M, et al. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Eur Radiol, 2016, 26: 1–9

    Article  Google Scholar 

  28. Chen S, Ni D, Qin J, et al. Bridging computational features toward multiple semantic features with multi-task regression: a study of CT pulmonary nodules. In: Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2016. 53–60

    Google Scholar 

  29. Setio A A, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imag, 2016, 35: 1160–1169

    Article  Google Scholar 

  30. Armato III S G, Giger M L, Doi K, et al. Computerized lung nodule detection: comparison of performance for low-dose and standard-dose helical CT scans. In: Proceedings of SPIE Medical Imaging 2001, San Diego, 2001. 1449–1454

    Chapter  Google Scholar 

  31. Armato III S G, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys, 2011, 38: 915–931

    Article  Google Scholar 

  32. Wiemker R, Bergtholdt M, Dharaiya E, et al. Agreement of CAD features with expert observer ratings for characterization of pulmonary nodules in CT using the LIDC-IDRI database. In: Proceedings of Medical Imaging 2009, Florida, 2009. 72600H

    Google Scholar 

  33. Suzuki K. Determining the receptive field of a neural filter. J Neural Eng, 2004, 1: 228

    Article  Google Scholar 

  34. Riedmiller M, Braun H. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference On Neural Networks, San Francisco, 1993. 586–591

    Chapter  Google Scholar 

  35. Armato III S G, Giger M L, MacMahon H. Automated detection of lung nodules in CT scans: preliminary results. Med Phys, 2001, 28: 1552–1561

    Article  Google Scholar 

  36. Sato Y, Nakajima S, Shiraga N, et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal, 1998, 2: 143–168

    Article  Google Scholar 

  37. Yuan R, Vos P M, Cooperberg P L. Computer-aided detection in screening CT for pulmonary nodules. Am J Roentgenol, 2006, 186: 1280–1287

    Article  Google Scholar 

  38. Opfer R, Wiemker R. Performance analysis for computer-aided lung nodule detection on LIDC data. In: Proceedings of SPIE Medical Imaging 2007, San Diego, 2007. 65151C

    Google Scholar 

  39. Gori I, Fantacci M E, Martinez A P, et al. An automated system for lung nodule detection in low-dose computed tomography. In: Proceedings of SPIE Medical Imaging 2007, San Diego, 2007. 65143R

    Google Scholar 

  40. Murphy K, van Ginneken B, Schilham A M R, et al. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal, 2009, 13: 757–770

    Article  Google Scholar 

  41. Golosio B, Masala G L, Piccioli A, et al. A novel multithreshold method for nodule detection in lung CT. Med Phys, 2009, 36: 3607–3618

    Article  Google Scholar 

  42. Messay T, Hardie R C, Rogers S K. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal, 2010, 14: 390–406

    Article  Google Scholar 

  43. Tan M, Deklerck R, Jansen B, et al. A novel computer-aided lung nodule detection system for CT images. Med Phys, 2011, 38: 5630–5645

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61190120, 61190121, 61190125, 61532002, 61300068, 61300067, 61672149, 61672077), National Science Foundation of USA (Grant Nos. IIS-0949467, IIS-1047715, IIS-1049448), Postdoctoral Science Foundation of China (Grant No. 2013M530512), and China Scholarship Council (Grant No. 201506020035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Hou.

Additional information

Supporting information The supporting information is available online at info.scichina.com and link. springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hou, F., Qin, H. et al. A CADe system for nodule detection in thoracic CT images based on artificial neural network. Sci. China Inf. Sci. 60, 072106 (2017). https://doi.org/10.1007/s11432-016-9008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9008-0

Keywords

Navigation