Skip to main content
Log in

Options for continuous radar Earth observations

  • Review
  • Special Focus on Geosynchronous Synthetic Aperture Radar
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Near Real Time (minutes or hours) radar imaging of ground targets located anywhere on an hemi- sphere, with or without interferometric coherence with previous passes, can be obtained with different solutions that are considered here. Geosynchronous systems, from the one proposed in 1978 by Tomiyasu to telecom satellite compatible solutions, and Low, Medium or Geosynchronous Earth Orbit constellations are discussed. Their benefits, problems, and sizes are briefly summarized, and a comparative table is presented. If interfer-ometric coherence is requested, continuous imaging is obtained only if a very wide geostationary aperture is progressively scanned, eventually using a MIMO (Multiple Input Multiple Output) combination of several slow librating small satellites. Instead, fast librating, strip mapping, large geosynchronous satellites do provide high resolution imaging, but interferometry (and thus coherent change detection) is achievable only after a minimum delay of 12 h, i.e., when the target comes in sight without need to squint the antenna. Hence, both complex and simple systems reach full resolution interferometric imaging and thus coherent change detection capability only after 12 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomiyasu K, Pacelli J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans Geosci Remote Sens, 1983, GE-21: 324–329

    Article  Google Scholar 

  2. Madsen S, Edelstein W, DiDomenico L D, et al. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Sydney, 2001. 1: 447–449

    Google Scholar 

  3. Prati C, Rocca F, Giancola D, et al. Passive system reusing backscattered digital audio broadcasting signals. IEEE Trans Geosci Remote Sens, 1998, 36: 197

    Article  Google Scholar 

  4. Edelstein W N, Madsen S N, Moussessian A, et al. Concepts and technologies for synthetic aperture radar from MEO and geosynchronous orbits. Proc SPIE, 2005, 5659, doi: 10.1117/12.578989

    Google Scholar 

  5. Hu C, Li Y H, Dong X C, et al. Optimal data acquisition and height retrieval in repeat-track geosynchronous SAR interferometry. Remote sens, 2015, 7: 13367–13389

    Article  Google Scholar 

  6. Hu C, Li Y H, Dong X C, et al. Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Trans Geosci Remote Sens, 2017, 55: 159–172

    Article  Google Scholar 

  7. Dong X C, Hu C, Tian Y, et al. Experimental study of ionospheric impacts on geosynchronous SAR using GPS signals. IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 9: 2171–2183

    Article  Google Scholar 

  8. Zhang Q J, Gao G T, Gao W J, et al. 3D orbit selection for regional observation GEO SAR. Neurocomputing, 2014, 151: 692–699

    Google Scholar 

  9. Hu C, Long T, Zeng T, et al. The accurate focusing and resolution analysis method in geosynchronous SAR. IEEE Trans Geosci Remote Sens, 2011, 49: 3548–3563

    Article  Google Scholar 

  10. Hu C, Tian Y, Yang X P, et al. Background ionosphere effects on geosynchronous SAR focusing: theoretical analysis and verification based on the BeiDou navigation satellite system (BDS). IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 9: 1143–1162

    Article  Google Scholar 

  11. GeoSTARe. ESA contract N 40001085494/13/NL/CT. Study on utilisation of future telecom satellites for Earth observations. 2013

  12. Monti Guarnieri A, Bombacib O, Catalanob T F, et al. ARGOS: a fractioned geosynchronous SAR. Acta Astronaut, 2015. In press

    Google Scholar 

  13. Monti Guarnieri A, Broquetas A, Recchia A, et al. Advanced radar geosynchronous observation system: ARGOS. IEEE Geosci Remote Sens Lett, 2015, 12: 1406–1410

    Article  Google Scholar 

  14. Recchia A, Monti Guarnieri A, Broquetas A et al. Impact of scene decorrelation on geosynchronous SAR data focusing, geoscience and remote sensing. IEEE Trans Geosci Remote Sens, 2016, 54: 1635–1646

    Article  Google Scholar 

  15. D’Aria D, Leanza A, Monti-Guarnieri A, et al. Decorrelating targets: models and measures. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016. 3194–3197

    Google Scholar 

  16. Recchia A, Monti Guarnieri A, Belotti M, et al. Demonstrative geosynchronous SAR products affected by clutter and APS decorrelation. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 1265–1268

    Google Scholar 

  17. Pichelli E, Ferretti R, Cimini D, et al. InSAR water vapor data assimilation into mesoscale model MM5: technique and pilot study. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 3859–3875

    Article  Google Scholar 

  18. Wadge G, Monti Guarnie A, Hobbs S E, et al. Potential atmospheric and terrestrial applications of a geosynchronous radar. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Québec, 2014. 946–949

    Google Scholar 

  19. Bevis M, Businger S, Chiswell S, et al. GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol Climatol, 1994, 33: 379–386

    Article  Google Scholar 

  20. Sato K, Realini E, Tsuda T, et al. A high-resolution, precipitable water vapor monitoring system using a dense network of GNSS receivers. Journal Disaster Res, 2013, 8: 37–47

    Article  Google Scholar 

  21. Cheng S L, Perissin D, Lin H, et al. Atmospheric delay analysis from GPS meteorology and InSAR APS. J Atmos Sol-Terr Phys, 2012, 86: 71–82

    Article  Google Scholar 

  22. Bock Y, Wdowinski S, Ferretti A, et al. Recent subsidence of the Venice Lagoon from continuous GPS and interfero- metric synthetic aperture radar. Geochem Geophys Geosyst, 2012, doi: 10.1029/2011GC003976

    Google Scholar 

  23. Perler D. Water vapor tomography using global navigation satellite systems. Dissertation for the Doctoral Degree. Swiss Federal Institute of Technology Zurich, 2011. http://dx.doi.org/10.3929/ethz-a-006875504

    Google Scholar 

  24. Awange J. Environmental Monitoring using Global Navigation Satellite Systems. Berlin/Heidelberg: Springer-Verlag, 2012

    Google Scholar 

  25. Onn F, Zebker H. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. J Geophys Res, 2006, 111, doi:10.1029/2005JB004012.

    Google Scholar 

  26. De Zan F, Zonno M, López-Dekker P, et al. Phase inconsistencies and water effects in SAR interferometric stacks. In: Proceedings of Fringe 2015 Workshop, Frascati, 2015

    Google Scholar 

  27. Entekhabi D, Njoku E G, O’Neill P E, et al. The soil moisture active passive (SMAP) mission. Proc IEEE, 2010, 98: 704–716

    Article  Google Scholar 

  28. Rocca F, Rucci A, Ferretti A, et al. Advanced InSAR interferometry for reservoir monitoring. First Break, 2013, 31: 77–85

    Google Scholar 

  29. M. L’Abbate, Germani C, Torre A, et al. Compact SAR and micro satellite solutions for Earth observation. In: Proceedings of 31st Space Symposium on Technical Track, Colorado, 2015

    Google Scholar 

  30. Ferretti A. Satellite InSAR Data: Reservoir Monitoring from Space (EET 9). EAGE Publications, 2014

    Google Scholar 

  31. Bruno D, Hobbs S. Radar imaging from geosynchronous orbit: temporal decorrelation aspects. IEEE Trans Geosci Remote Sens, 2010, 48: 2924–2929

    Article  Google Scholar 

  32. Belotti M, Broquetas A, Leanza A, et al. An efficient method for the azimuth compression of geosynchronous SAR data through sub-apertures processing. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, 2013. 2047–2050

    Google Scholar 

  33. Lombardo P, Greco M, Gini F, et al. Impact of clutter spectra on radar performance prediction. IEEE Trans Aerosp Electron Syst, 2001, 37: 1022–1038

    Article  Google Scholar 

  34. Rodon J R, Broquetas A, Monti Guarnieri A, et al. Geosynchronous SAR focusing with atmospheric phase screen retrieval and compensation. IEEE Trans Geosci Remote Sens, 2013, 51: 4397–4404

    Article  Google Scholar 

  35. Guarnieri A M, Tebaldini S, Rocca F, et al. GEMINI: geosynchronous SAR for Earth monitoring by interferometry and imaging. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Munich, 2012. 210–213

    Google Scholar 

  36. Chen X L, Guan J, Huang Y, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion. IEEE Trans Geosci Remote Sens, 2015, 53: 2225–2240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Monti Guarnieri.

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monti Guarnieri, A., Rocca, F. Options for continuous radar Earth observations. Sci. China Inf. Sci. 60, 060301 (2017). https://doi.org/10.1007/s11432-016-9067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9067-7

Keywords

Navigation