Skip to main content
Log in

Optimal fusion estimation for stochastic systems with cross-correlated sensor noises

  • Research Paper
  • Special Focus on Analysis and Synthesis for Stochastic Systems
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper is concerned with the optimal fusion of sensors with cross-correlated sensor noises. By taking linear transformations to the measurements and the related parameters, new measurement models are established, where the sensor noises are decoupled. The centralized fusion with raw data, the centralized fusion with transformed data, and a distributed fusion estimation algorithm are introduced, which are shown to be equivalent to each other in estimation precision, and therefore are globally optimal in the sense of linear minimum mean square error (LMMSE). It is shown that the centralized fusion with transformed data needs lower communication requirements compared to the centralized fusion using raw data directly, and the distributed fusion algorithm has the best flexibility and robustness and proper communication requirements and computation complexity among the three algorithms (less communication and computation complexity compared to the existed distributed Kalman filtering fusion algorithms). An example is shown to illustrate the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X R, Zhu Y M, Wang J, et al. Optimal linear estimation fusion-part 1: unified fusion rules. IEEE Trans Inform Theory, 2003, 49: 2192–2208

    Article  MATH  Google Scholar 

  2. BarShalom Y, Li X R, Kirubarajam T. Estimation With Application to Tracking and Navigation. New York: John Wiley and Sons, 2001

    Book  Google Scholar 

  3. Song E B, Zhu Y M, Zhou J, et al. Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica, 2007, 43: 1450–1456

    Article  MATH  MathSciNet  Google Scholar 

  4. Ge Q B, Xu D X, Wen C L. Cubature information filters with correlated noises and their applications in decentralized fusion. Signal Process, 2014, 94: 434–444

    Article  Google Scholar 

  5. Jayaweera S, Mosquera C. Distributed sequential estimation with noisy, correlated observations. IEEE Signal Process Lett, 2008, 15: 741–744

    Article  Google Scholar 

  6. Feng J X, Zeng M. Optimal distributed Kalman filtering fusion for a linear dynamic system with cross-correlated noises. Int J Syst Sci, 2012, 43: 385–398

    Article  MATH  MathSciNet  Google Scholar 

  7. Li Y, Wen C. An optimal sequential decentralized filter of discrete-time systems with crosscorrelated noises. In: Proceedings of the 17th World Congress of the International Federation of Automatic Control, Seoul, 2008. 7560–7565

    Google Scholar 

  8. Feng X. Fusion estimation for sensor network systems with correlated measurements and oosms. Dissertation for Ph.D. Degree. Hangzhou: Hangzhou Dianzi University, 2009

    Google Scholar 

  9. Sun S, Deng Z. Multi-sensor optimal information fusion Kalman filter. Automatica, 2004, 40: 1017–1023

    Article  MATH  MathSciNet  Google Scholar 

  10. Yan L P, Li X R, Xia Y Q, et al. Optimal sequential and distributed fusion for state estimation in cross-correlated noise. Automatica, 2013, 49: 3607–3612

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu Y L, Yan L P, Xia Y Q, et al. Multirate multisensor distributed data fusion algorithm for state estimation with cross-correlated noises. In: Proceedings of the 32th Chinese Control Conference, Xi’an, 2013. 4682–4687

    Google Scholar 

  12. Yan L P, Liu J, Jiang L, et al. Optimal sequential estimation for multirate dynamic systems with unreliable measurements and correlated noise. In: Proceedings of the 35th Chinese Control Conference, Chengdu, 2016. 4900–4905

    Google Scholar 

  13. Feng J X, Wang Z D, Zeng M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises. Inf Fusion, 2013, 14: 78–86

    Article  Google Scholar 

  14. Ran C J, Deng Z L. Correlated measurement fusion Kalman filters based on orthogonal transformation. In: Proceedings of the 21st Annual International Conference on Chinese Control and Decision Conference (CCDC 2009), Guilin, 2009. 1193–1198

    Google Scholar 

  15. Ran C J, Deng Z L. Two correlated measurement fusion kalman filtering algorithms based on orthogonal transformation and their functional equivalence. In: Proceedings of Joint 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, Shanghai, 2009. 2351–2356

    Google Scholar 

  16. Duan Z, Han C, Tao T. Optimal multi-sensor fusion target tracking with correlated measurement noises. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Hague, 2004. 2: 1272–1278

    Google Scholar 

  17. Duan Z, Li X R. The optimality of a class of distributed estimation fusion algorithm. In: Proceedings of the 11th International Conference on Information Fusion, Cologne, 2008. 16: 1–6

    Google Scholar 

  18. Duan Z, Li X R. Lossless linear transformation of sensor data for distributed estimation fusion. IEEE Trans Signal Process, 2011, 59: 362–372

    Article  MathSciNet  Google Scholar 

  19. Liu X, Li Z, Liu X, et al. The sufficient condition for lossless linear transformation for distributed estimation with cross-correlated measurement noises. Int J Process Control, 2013, 23: 1344–1349

    Article  Google Scholar 

  20. Zhang Y G, Huang Y L. Gaussian approximate filter for stochastic dynamic systems with randomly delayed measurements and colored measurement noises. Sci China Inf Sci, 2016, 59: 092207

    Article  Google Scholar 

  21. Wang Y Q, Zhao D, Li Y Y, et al. Unbiased minimum variance fault and state estimation for linear discrete time–varying two–dimensional systems. IEEE Trans Autom Control, 2017, 62: 5463–5469

    Article  Google Scholar 

  22. Ge Q, Shao T, Duan Z, et al. Performance analysis of the Kalman filter with mismatched measurement noise covariance. IEEE Trans Autom Control, 2016, 61: 4014–4019

    Article  MATH  Google Scholar 

  23. Ge Q B, Ma J Y, Chen S D, et al. Observation degree analysis on mobile target tracking for wireless sensor networks. Asian J Control, 2017, 19: 1259–1270

    Article  MathSciNet  Google Scholar 

  24. Zhang K S, Li X R, Zhang P, et al. Optimal linear estimation fusion-part vi: sensor data compression. In: Proceedings of the 2nd International Conference of Information Fusion, Cairns, 2003. 221–228

    Google Scholar 

  25. Song E B, Zhu Y M, Zhou J. Sensors’ optimal dimensionality compression matrix in estimation fusion. IEEE Trans Signal Process, 2005, 41: 2131–2139

    MATH  MathSciNet  Google Scholar 

  26. Zhu Y M, Song E B, Zhou J, et al. Information fusion strategies and performance bounds in packet-drop networks. IEEE Trans Signal Process, 2005, 53: 1631–1639

    Article  MathSciNet  Google Scholar 

  27. Schizas I D, Giannakis G B, Luo Z Q. Distributed estimation using reduced-dimensionality sensor observations. IEEE Trans Signal Process, 2007, 55: 4284–4299

    Article  MathSciNet  Google Scholar 

  28. Li X R, Zhang K S. Optimal linear estimation fusion–part iv: optimality and efficiency of distributed fusion. In: Proceedings of the 4th International Conference Information Fusion, Montreal, 2001. 19–26

    Google Scholar 

  29. Li J, Al Regib G. Distributed estimation in energy-constrained wireless sensor networks. IEEE Trans Signal Process, 2009, 57: 3746–3758

    Article  MathSciNet  Google Scholar 

  30. Msechu J J, Roumeliotis S I, Ribeiro A, et al. Decentralized quantized kalman filtering with scalable communication cost. IEEE Trans Signal Process, 2008, 56: 3727–3741

    Article  MathSciNet  Google Scholar 

  31. Xu J, Li J X, Xu S. Data fusion for target tracking in wireless sensor networks using quantized innovations and Kalman filtering. Sci China Inf Sci, 2012, 55: 530–544

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang Z, Li J, Liu L. Distributed state estimation and data fusion in wireless sensor networks using multi-level quantized innovation. Sci China Inf Sci, 2016, 59, 022316

    Google Scholar 

  33. Liang Y, Chen T, Pan Q. Multi-rate optimal state estimation. Int J Control, 2009, 82: 2059–2076

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang W, Liu S, Yu L. Fusion estimation for sensor networks with nonuniform estimation rates. IEEE Trans Circ Syst I: Regular Papers, 2014, 61: 1485–1498

    MathSciNet  Google Scholar 

  35. Yan L P, Jiang L, Xia Y Q, et al. State estimation and data fusion for multirate sensor networks. Int J Adapt Control Signal Process, 2016, 30: 3–15

    Article  MATH  MathSciNet  Google Scholar 

  36. Simon D. Optimal State Estimation. New York: John Wiley and Sons, Inc. Publication, 2006

    Book  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant Nos. 61225015, 61473040), Beijing Natual Science Foundation (Grant No. 4161001), and Innovative Research Groups of the National Nature Science Foundation of China (Grant No. 61321002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Xia, Y. & Fu, M. Optimal fusion estimation for stochastic systems with cross-correlated sensor noises. Sci. China Inf. Sci. 60, 120205 (2017). https://doi.org/10.1007/s11432-017-9140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9140-x

Keywords

Navigation