Skip to main content
Log in

Overview of deep space laser communication

  • Review
  • Special Focus on Deep Space Communications
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The deep space probe is a vital technology for observing and exploring the universe. It is thus intensifying as an aerospace research focus on an international scale. Despite improving the frequency band, the conventional microwave communication technique has difficulty satisfying the increased demand for the enormous volume of scientific data returning to the Earth. With a carrier frequency that is several orders of magnitude higher than the microwave, free-space optical communication is a robust and promising method for achieving both high bit rates and long distances in deep space communication. In this article, the history of this technology is summarized and the objective laws are formulated, while key techniques and development trends are analyzed. Finally, useful concepts and suggestions are proposed for the development of deep space laser communication in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu W R, Liu W W, Qiao D, et al. Investigation on the development of deep space exploration. Sci China Tech Sci, 2012, 55: 1086–1091

    Article  Google Scholar 

  2. Wu W R, Dong G L, Li H T, et al. Engineering and Technology of Deep Space TT&C System (in Chinese). Beijing: Science Press, 2013

    Google Scholar 

  3. Ning X L, Li Z, Wu W R, et al. Recursive adaptive filter using current innovation for celestial navigation during the Mars approach phase. Sci China Inf Sci, 2017, 60: 032205

    Article  Google Scholar 

  4. Wu W R, Yu D Y. Development of deep space exploration and its future key technologies (in Chinese). J Deep Space Explor, 2014, 1: 5–17

    Google Scholar 

  5. Fu K, Zhao G Q, Li X J, et al. Iterative spherical simplex unscented particle filter for CNS/Redshift integrated navigation system. Sci China Inf Sci, 2017, 60: 042201

    Article  Google Scholar 

  6. Cai Y G, Sun J F, Li G Y, et al. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying. Appl Opt, 2016, 55: 4514

    Article  Google Scholar 

  7. Ma J, Li K, Tan L Y, et al. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over gamma-gamma atmospheric turbulence. Appl Opt, 2015, 54: 7575–7585

    Article  Google Scholar 

  8. Meng L X, Li L, Zhang L Z, et al. Research on optic antenna of space laser communication networking. In: Proceedings of the 5th International Symposium on Photoelectronic Detection and Imaging, Beijing, 2013

    Google Scholar 

  9. Luo J J, Li H Z, Tang Y F, et al. Research on laser communication technology development for deep space exploration (in Chinese). Spacecraft Eng, 2013, 22: 94–97

    Google Scholar 

  10. Ma J, Xu K H, Tan L Y, et al. Analysis for mars laser communications system in USA (in Chinese). Chin J Space Sci, 2006, 26: 364–369

    Google Scholar 

  11. Han H S, Chen J. 21st century foreign deep space exploration development plans and their progresses (in Chinese). Spacecraft Eng, 2008, 17: 1–22

    Google Scholar 

  12. James R L. Deep space optical communication development program. Proc SPIE, 1987, 56: 15–16

    Google Scholar 

  13. Boroson D M, Robinson B S. The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions. Space Sci Rev, 2014, 185: 115–128

    Article  Google Scholar 

  14. Boroson D M, Robinson B S, Murphy D V, et al. Overview and results of the lunar laser communication demonstration. Proc SPIE, 2014, 8971: 89710S

    Google Scholar 

  15. Grechukhin I A, Grigoriev V N, Danileiko N O, et al. Russian free-space laser communication experiment “SLS”. In: Proceedings of the 18th International Workshop on Laser Ranging, Fujiyoshida, 2013

    Google Scholar 

  16. Grigoryev V, Kovalev V, Shargorodskiy V, et al. High-bit-rate laser space communication technology and results of onboard experiment. In: Proceedings of International Conference on Space Optical Systems and Applications (ICSOS), Kobe, 2014

    Google Scholar 

  17. Renny A F, David A K, Harold T Y, et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station. Proc SPIE, 2011, 8184: 81840D

    Google Scholar 

  18. Heine F, Mühlnikel G, Zech H, et al. LCT for the European data relay system: in orbit commissioning of the alphasat and sentinel 1A LCTs. Proc SPIE, 2015, 9354: 93540G

    Google Scholar 

  19. Hideki T, Yoshihisa T, Yoshisada K, et al. Study on coding parameters for a small optical transponder. In: Proceedings of International Conference on Space Optical Systems and Applications (ICSOS), Kobe. 2014

    Google Scholar 

  20. Mukai T, Inagawa S, Suzuki K, et al. A study of free space laser communication experiment on the ISS Japanese experiment module for space explorations. In: Proceedings of IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, 2015

    Google Scholar 

  21. Hemmati H. Deep Space Optical Communications. Hoboken: John Wiley & Sons, 2005

    Google Scholar 

  22. Hemmati H. Status of free-space optical communications program at JPL. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2000. 101–105

    Google Scholar 

  23. Hemmati H, Page N A. Preliminary opto-mechanical design for the X2000 transceiver. Proc SPIE, 1999, 3615: 206–211

    Google Scholar 

  24. Boroson D M, Roy S B, Scozzafava J J. Overview of high rate deep space laser communications options. Proc SPIE, 2004, 5338: 37–49

    Article  Google Scholar 

  25. Biswas A, Boroson D M, Edwards B L. Mars laser communication demonstration: what it would have been. Proc SPIE, 2006, 6105: 610502

    Article  Google Scholar 

  26. Shaik K, Wonica D, Wilhelm M. Optical subnet concepts for the deep space network. Telecommun Data Acquisition Prog Rep, 1993, 42: 153–181

    Google Scholar 

  27. Wilson K E, Wright M, Cesarone R, et al. Cost and performance comparison of an earth-orbiting optical communication relay transceiver and a ground-based optical receiver subnet. Interpla Netw Prog Rep, 2003, 153: 1–12

    Google Scholar 

  28. Levitt B, Wilson K, Roberts T, et al. Hybrid optical DSN architecture: interleaved PPM concept. In: Proceedings of JPL Internal Conference, Pasadena, 2004

    Google Scholar 

  29. Badesha S S. SPARCL: a high altitude tethered balloon-based optical space-to-ground communication system. Proc SPIE, 2002, 4821: 181–193

    Article  Google Scholar 

  30. Mecherle G S, Akle W, Starkus C, et al. Direct detection optical relay satellite for deep-space communication. Proc SPIE, 1994, 2123: 134–155

    Article  Google Scholar 

  31. Boroson D M, Scozzafava J J, Murphy D V, et al. The lunar laser communications demonstration (LLCD). In: Proceedings of the 3rd IEEE International Conference on Space Mission Challenges for Information Technology, Pasadena, 2009. 23–28

    Google Scholar 

  32. Sun X L, Skillman D R, Hoffman E D, et al. Free space laser communication experiments from Earth to the lunar reconnaissance orbiter in lunar orbit. Opt Express, 2013, 21: 1865–1871

    Article  Google Scholar 

  33. Sun X L, Skillman D R, Hoffman E D, et al. Simultaneous laser ranging and communication from an Earth-based satellite laser ranging station to the lunar reconnaissance orbiter in lunar orbit. Proc SPIE, 2013, 8610: 861003

    Article  Google Scholar 

  34. Boroson D M, Robinson B S. Status of the lunar laser communication demonstration. Proc SPIE, 2013, 8610: 861002

    Article  Google Scholar 

  35. Robinson B S, Boroson DM, Burianek D A, et al. The NASA lunar laser communication demonstration-successful highrate laser communications to and from the Moon. In: Proceedings of International Conference on Space Operations, Pasadena, 2014. 1–7

    Google Scholar 

  36. Boroson D M, Robinson B S, Burianek D A, et al. Overview and status of the lunar laser communications demonstration. Proc SPIE, 2014, 8971: 89710S

    Google Scholar 

  37. Constantine S, Elgin L E, Stevens M L, et al. Design of a high-speed space modem for the lunar laser communications demonstration. Proc SPIE, 2011, 7923: 792308

    Article  Google Scholar 

  38. Burnside J W, Conrad S D, Pillsbury A D, et al. Design of an inertially stabilized telescope for the LLCD. Proc SPIE, 2011, 7923: 79230L

    Article  Google Scholar 

  39. Murphy D V, Kansky J E, Grein M E, et al. LLCD operations using the lunar lasercom ground terminal. Proc SPIE, 2014, 8971: 89710V

    Google Scholar 

  40. Grein M E, Kerman A J, Dauler E A, et al. Design of a ground-based optical receiver for the lunar laser communications demonstration. In: Proceedings of International Conference on Space Optical Systems and Applications, Santa Monica, 2011. 78–82

    Google Scholar 

  41. Caplan D O, Carney J J, Lafon R E, et al. Design of a 40 Watt 1.55 μm uplink transmitter for lunar laser communications. Proc SPIE, 2012, 8246: 82460M

    Article  Google Scholar 

  42. Schulein R T, Lafonb R E, Taylora M B, et al. Nonlinearity mitigation of a 40 Watt 1.55 micron uplink transmitter for lunar laser communications. Proc SPIE, 2013, 8610: 86100F

    Article  Google Scholar 

  43. Grein M E, Kerman A J, Dauler E A, et al. An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires. Proc SPIE, 2015, 9492: 949208

    Article  Google Scholar 

  44. Edwards B L, Israel D, Wilson K, et al. The laser communications relay demonstration. In: Proceedings of International Conference on Space Optical Systems and Applications (ICSOS), Ajaccio, 2012. 1–9

    Google Scholar 

  45. Edwards B, Israel D, Caroglanian A, et al. A day in the life of the laser communications relay demonstration project. In: Proceedings of International Conference on Space Operations, Daejeon, 2016. 1–13

    Google Scholar 

  46. Cornwell D M. NASA’s optical communications program for 2015 and beyond. Proc SPIE, 2015, 9354: 93540E

    Google Scholar 

  47. Cornwell D M. NASA’s optical communications program for future planetary and near-Earth missions. Study Rep SCaN Program, 2016, 1–2

    Google Scholar 

  48. Fielhauer K B, Boone B G, Raible D E. Concurrent system engineering and risk reduction for dual-band (RF/optical) spacecraft communications. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2012. 1–7

    Google Scholar 

  49. Raible D, Hylton A. Integrated RF/optical interplanetary networking preliminary explorations and empirical results. In: Proceedings of the 30th AIAA International Communications Satellite System Conference (ICSSC), Ottawa, 2012

    Google Scholar 

  50. Sodnik Z, Heese C, Carnelli I, et al. Multi-purpose laser communication system for the asteroid impact mission (AIM). In: Proceedings of IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, 2015. 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Chen, M., Zhang, Z. et al. Overview of deep space laser communication. Sci. China Inf. Sci. 61, 040301 (2018). https://doi.org/10.1007/s11432-017-9216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9216-0

Keywords

Navigation