Skip to main content
Log in

Improved RIP-based performance guarantees for multipath matching pursuit

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The multipath matching pursuit (MMP) is a generalization of the orthogonal matching pursuit (OMP), which generates multiple child paths for every candidate in each iteration and selects the candidate having the minimal residual as the final support set when iteration ends. In this paper we analyze its performance in both noiseless and noisy cases. The restricted isometry property (RIP)-based condition of MMP that ensures accurate recovery of sparse signals in the noiseless case is derived by using a simple technique. The performance guarantees of the MMP for support recovery in noisy cases are also discussed. It is shown that under certain conditions on the RIP and minimum magnitude of nonzero components of the sparse signal, the MMP will exactly recover the true support of the sparse signal in cases of bounded noises and recover the true support with a high probability in the case of Gaussian noise. Our bounds on the RIP improve the existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Process Mag, 2008, 25: 21–30

    Article  Google Scholar 

  2. Bu H X, Bai X, Tao R. Compressed sensing SAR imaging based on sparse representation in fractional Fourier domain. Sci China Inf Sci, 2012, 55: 1789–1800

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang B C, Zhang Z, Jiang C L, et al. System design and first airborne experiment of sparse microwave imaging radar: initial results. Sci China Inf Sci, 2015, 58: 062306

    Google Scholar 

  4. Hou Q K, Liu Y, Fan L J, et al. Compressed sensing digital receiver and orthogonal reconstructing algorithm for wideband ISAR radar. Sci China Inf Sci, 2015, 58: 020302

    Google Scholar 

  5. Yu H, Shu F, You Y, et al. Compressed sensing-based time-domain channel estimator for full-duplex OFDM systems with IQ-imbalances. Sci China Inf Sci, 2017, 60: 082303

    Article  Google Scholar 

  6. Candes E J, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51: 4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  7. Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53: 4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang J, Shim B. On the recovery limit of sparse signals using orthogonal matching pursuit. IEEE Trans Signal Process, 2012, 60: 4973–4976

    Article  MathSciNet  Google Scholar 

  9. Wen J M, Zhou Z C, Wang J, et al. A sharp condition for exact support recovery with orthogonal matching pursuit. IEEE Trans Signal Process, 2017, 65: 1370–1382

    Article  MathSciNet  Google Scholar 

  10. Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Top Signal Process, 2010, 4: 310–316

    Article  Google Scholar 

  11. Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory, 2012, 58: 1094–1121

    Article  MathSciNet  MATH  Google Scholar 

  12. Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmonic Anal, 2009, 26: 301–321

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory, 2009, 55: 2230–2249

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang J, Kwon S K, Shim B. Generalized orthogonal matching pursuit. IEEE Trans Signal Process, 2012, 60: 6202–6216

    Article  MathSciNet  Google Scholar 

  15. Satpathi S, Das R L, Chakraborty M. Improving the bound on the RIP constant in generalized orthogonal matching pursuit. IEEE Signal Process Lett, 2013, 20: 1074–1077

    Article  Google Scholar 

  16. Shen Y, Pan W L, Li J, et al. Analysis of generalised orthogonal matching pursuit using restricted isometry constant. Electron Lett, 2014, 50: 1020–1022

    Article  Google Scholar 

  17. Rui G, Tian W. Blind sparsity weak subspace pursuit for compressed sensing. Electron Lett, 2013, 49: 369–370

    Article  Google Scholar 

  18. Cotter S F, Rao B D. Application of tree-based searches to matching pursuit. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, 2001. 3933–3936

    Google Scholar 

  19. Karabulut G Z, Moura L, Panario D, et al. Integrating flexible tree searches to orthogonal matching pursuit algorithm. IEE Proc Vis Image Process, 2006, 153: 538–548

    Article  Google Scholar 

  20. Karahanoglu N B, Erdogan H. A* orthogonal matching pursuit: best-first search for compressed sensing signal recovery. Digit Signal Process, 2012, 22: 555–568

    Article  MathSciNet  Google Scholar 

  21. Wang J, Kwon S, Shim B. Multipath matching pursuit. IEEE Trans Inf Theory, 2014, 60: 2986–3001

    Article  MathSciNet  MATH  Google Scholar 

  22. Shim B, Kwon S, Song B. Sparse detection with integer constraint using multipath matching pursuit. IEEE Commun Lett, 2014, 18: 1851–1854

    Article  Google Scholar 

  23. Sah A K, Chaturvedi A K. An MMP-based approach for detection in large MIMO systems using sphere decoding. IEEE Wirel Commun Lett, 2017, 6: 158–161

    Article  Google Scholar 

  24. Candés E J. The restricted isometry property and its implications for compressed sensing. Comput Rendus Math, 2008, 346: 589–592

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu R, Huang W, Chen D R. The exact support recovery of sparse signals with noise via orthogonal matching pursuit. IEEE Signal Process Lett, 2013, 20: 403–406

    Article  Google Scholar 

  26. Cai T T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans Inf Theory, 2011, 57: 4680–4688

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61421001, 61331021, 61501029, 61671063, 61771046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Bai, X. & Tao, R. Improved RIP-based performance guarantees for multipath matching pursuit. Sci. China Inf. Sci. 61, 102303 (2018). https://doi.org/10.1007/s11432-017-9289-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9289-2

Keywords

Navigation