Skip to main content
Log in

Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Hybrid cavities composed of a Fabry-Pérot (FP) cavity and a whispering-gallery mode (WGM) microcavity have been proposed and demonstrated for modulating mode Q factor to realize single mode and optical bistable lasers. In this article, we report hybrid cavity lasers with a pentagon microcavity and a square microcavity, respectively. The reflectivity spectra of different microcavities are simulated to select microcavities for hybrid cavities. Mode coupling with mode Q factor enhancement is investigated numerically and experimentally. Stable single mode operations with a high coupling efficiency to a single mode fiber are realized for a hybrid cavity laser with a square microcavity. Furthermore, optical bistability hybrid lasers are investigated as the microcavity is unbiased, due to saturable absorption in the microcavity and mode competition, respectively. All-optical flip-flop is demonstrated using trigger optical pulses with a width of 100 ps for mode competition bistability. The stable single mode operation and optical bistability of hybrid cavity lasers may shed light on the applications for photonic integrated circuits and optical signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60: 289–291

    Article  Google Scholar 

  2. Choi S J, Djordjev K, Sang J C K, et al. Microdisk lasers vertically coupled to output waveguides. IEEE Photon Technol Lett, 2003, 15: 1330–1332

    Article  Google Scholar 

  3. Audet R, Belkin M A, Fan J A, et al. Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators. Appl Phys Lett, 2007, 91: 131106

    Article  Google Scholar 

  4. Song Q H, Ge L, Stone A D, et al. Directional laser emission from a wavelength-scale chaotic microcavity. Phys Rev Lett, 2010, 105: 103902

    Article  Google Scholar 

  5. Jiang X F, Xiao Y F, Zou C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater, 2012, 24: 260–264

    Google Scholar 

  6. Guo W-H, Huang Y-Z, Lu Q-Y, et al. Modes in square resonators. IEEE J Quantum Electron, 2003, 39: 1563–1566

    Article  Google Scholar 

  7. Huang Y Z, Che K J, Yang Y D, et al. Directional emission InP/GaInAsP square-resonator microlasers. Opt Lett, 2008, 33: 2170–2172

    Article  Google Scholar 

  8. Huang Y Z, Lü X M, Lin J D, et al. Output characteristics of square and circular resonator microlasers connected with two output waveguides. Sci China Technol Sci, 2013, 56: 538–542

    Article  Google Scholar 

  9. Long H, Huang Y Z, Yang Y D, et al. Mode characteristics of unidirectional emission AlGaInAsInP square resonator microlasers. IEEE J Quantum Electron, 2014, 50: 981–989

    Google Scholar 

  10. Long H, Huang Y Z, Yang Y D, et al. Mode and modulation characteristics for microsquare lasers with a vertex output waveguide. Sci China-Phys Mech Astron, 2015, 58: 114205

    Article  Google Scholar 

  11. Ma X W, Huang Y Z, Yang Y D, et al. Mode coupling in hybrid square-rectangular lasers for single mode operation. Appl Phys Lett, 2016, 109: 071102

    Article  Google Scholar 

  12. Ma X W, Huang Y Z, Yang Y D, et al. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J Sel Top Quantum Electron, 2017, 23: 1500409

    Google Scholar 

  13. Huang Y Z, Ma X W, Yang Y D, et al. Lasing characteristics of integrated lasers with whispering-gallery mode microresonator. In: Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE), San Francisco, 2016. 9751: 97510J

    Google Scholar 

  14. Tsang W T, Olsson N A, Logan R A. High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers. Appl Phys Lett, 1983, 42: 650–652

    Article  Google Scholar 

  15. Coldren L A. Monolithic tunable diode lasers. IEEE J Sel Top Quantum Electron, 2000, 6: 988–999

    Article  Google Scholar 

  16. He J J, Liu D. Wavelength switchable semiconductor laser using half-wave V-coupled cavities. Opt Expr, 2008, 16: 3896–3911

    Article  Google Scholar 

  17. Shang L, Liu L, Xu L. Single-frequency coupled asymmetric microcavity laser. Opt Lett, 2008, 33: 1150–1152

    Article  Google Scholar 

  18. D’Agostino D, Lenstra D, Ambrosius H P M M, et al. Coupled cavity laser based on anti-resonant imaging via multimode interference. Opt Lett, 2015, 40: 653–656

    Article  Google Scholar 

  19. Li X, Zhu Z, Xi Y, et al. Single-mode Fabry-Perot laser with deeply etched slanted double trenches. Appl Phys Lett, 2015, 107: 091108

    Article  Google Scholar 

  20. Tanaka Y, Upham J, Nagashima T, et al. Dynamic control of the Q-factor in a photonic crystal nanocavity. Nat Mater, 2007, 6: 862–865

    Article  Google Scholar 

  21. Hughes S. Coupled-cavity QED using planar photonic crystals. Phys Rev Lett, 2007, 98: 083603

    Article  Google Scholar 

  22. Tanabe T, Notomi M, Taniyama H, et al. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys Rev Lett, 2009, 102: 043907

    Article  Google Scholar 

  23. Sato Y, Tanaka Y, Upham J, et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat Photon, 2011, 6: 5661

    Google Scholar 

  24. Dündar M A, Voorbraak J A M, Nötzel R, et al. Multimodal strong coupling of photonic crystal cavities of dissimilar size. Appl Phys Lett, 2012, 100: 081107

    Article  Google Scholar 

  25. Jin C Y, Johne R, Swinkels M Y, et al. Ultrafast non-local control of spontaneous emission. Nat Nanotech, 2014, 9: 886–890

    Article  Google Scholar 

  26. Ma X W, Huang Y Z, Yang Y D, et al. All-optical flip-flop based on hybrid square-rectangular bistable lasers. Opt Lett, 2017, 42: 2291–2294

    Article  Google Scholar 

  27. Johnson J E, Tang C L, Grande W J. Optical flip-flop based on two-mode intensity bistability in a cross-coupled bistable laser diode. Appl Phys Lett, 1993, 63: 3273–3275

    Article  Google Scholar 

  28. Kawaguchi H. Bistable laser diodes and their applications: state of the art. IEEE J Sel Top Quantum Electron, 1997, 3: 1254–1270

    Article  Google Scholar 

  29. Saitoh E, Miyajima H, Yamaoka T, et al. Current-induced resonance and mass determination of a single magnetic domain wall. Nature, 2004, 432: 203–206

    Article  Google Scholar 

  30. Takenaka M, Raburn M, Nakano Y. All-optical flip-flop multimode interference bistable laser diode. IEEE Photon Technol Lett, 2005, 17: 968–970

    Article  Google Scholar 

  31. Huybrechts K, Morthier G, Baets R. Fast all-optical flip-flop based on a single distributed feedback laser diode. Opt Expr, 2008, 16: 11405–11410

    Article  Google Scholar 

  32. Liu L, Kumar R, Huybrechts K, et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat Photon, 2010, 4: 182–187

    Google Scholar 

  33. Wu Y, Zhu Y, Liao X, et al. All-optical flip-flop operation based on bistability in V-cavity laser. Opt Expr, 2016, 24: 12507–12514

    Article  Google Scholar 

  34. Fitsios D, Alexoudi T, Bazin A, et al. Ultra-compact III-V-on-Si photonic crystal memory for flip-flop operation at 5 Gb/s. Opt Expr, 2016, 24: 4270–4277

    Article  Google Scholar 

  35. Alexoudi T, Fitsios D, Bazin A, et al. III-V-on-Si photonic crystal nanocavity laser technology for optical static random access memories. IEEE J Sel Top Quantum Electron, 2016, 22: 4901410

    Article  Google Scholar 

  36. Mori T, Yamayoshi Y, Kawaguchi H. Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser. Appl Phys Lett, 2006, 88: 101102

    Article  Google Scholar 

  37. Katayama T, Ooi T, Kawaguchi H. Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical-cavity surface-emitting lasers. IEEE J Quantum Electron, 2009, 45: 1495–1504

    Article  Google Scholar 

  38. Alharthi S S, Hurtado A, Korpijarvi V M, et al. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser. Appl Phys Lett, 2015, 106: 021117

    Article  Google Scholar 

  39. Guo W-H, Li W-J, Huang Y-Z. Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation. IEEE Microw Wireless Compon Lett, 2001, 11: 223–225

    Article  Google Scholar 

  40. Yang Y D, Wang S J, Huang Y Z. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Opt Expr, 2009, 17: 23010–23015

    Article  Google Scholar 

  41. Harder C, Lau K Y, Yariv A. Bistability and pulsations in CW semiconductor lasers with a controlled amount of saturable absorption. Appl Phys Lett, 1981, 39: 382–384

    Article  Google Scholar 

  42. Li J, Wang Q. A common-cavity two-section InGaAsP/InP bistable laser with a low optical switching power. Opt Commun, 1991, 83: 71–75

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61235004, 61527823, 61376048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Ma, X., Yang, Y. et al. Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor. Sci. China Inf. Sci. 61, 080401 (2018). https://doi.org/10.1007/s11432-017-9361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9361-3

Keywords

Navigation