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CONVERGENCE OF MULTI-BLOCK BREGMAN ADMM
FOR NONCONVEX COMPOSITE PROBLEMS
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AsstracT. The alternating direction method with multipliers (ADMNias been one of most
powerful and successful methods for solving various colit@gsoblems. The convergence of
the conventional ADMM (i.e., 2-block) for convex objectifienctions has been justified for a
long time, and its convergence for nonconvex objectivetions has, however, been established
very recently. The multi-block ADMM, a natural extensionADMM, is a widely used scheme
and has also been found very useful in solving various noreopptimization problems. It
is thus expected to establish convergence theory of the-blaltk ADMM under nonconvex
frameworks. In this paper we present a Bregman modificati@tdock ADMM and establish
its convergence for a large family of nonconvex functionse ftther extend the convergence
results to theN-block case l > 3), which underlines the feasibility of multi-block ADMM
applications in nonconvex settings. Finally, we presemtrakation study and a real-world appli-
cation to support the correctness of the obtained thealeatisertions.

Keyworbs: nonconvex regularization, alternating direction methsuabanalytic function, K-L
inequality, Bregman distance.

1. INTRODUCTION

Many problems arising in the fields of sighal & image procegsind machine learning![7,/34]
involve finding a minimizer of the sum & (N > 2) functions with linear equality constraint. If
N = 2, the problem then consists of solving

min f(X) + g(y)
st. Ax+By=0 Q)
whereA e R™™ andB € R™™ are given matricest : R™ — R is a proper lower semicontinu-

ous function, and) : R — R is a smooth function. Because of its separable structooelem
(@) can be #iciently solved by ADMM, namely, through the procedure

X1 = arg min Ly (%, Y5, p¥)
xeRM

y<rt = arg minL, (X1, y, p¥) 2)
yeR"2

pk+1 — pk + a(A)(k+1 + B)}<+1)
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wherea is a penalty parameter and
a
Lo ¥, P) = (9 +90y) + (P, AX+ By) + SlIAX+ By

is the associated augmented Lagrangian function with plgltip. So far, various variants
of the conventional ADMM have been suggested. Among sucleties, Bregman ADMM
(BADMM) is the one designed to improve the performance ofcpoure [(R)([[20, 42, 43, 56].
More specifically, BADMM takes the following iterative form

skl _ arg rrg{ir; La(x,yk’ pk) + Agp(X, Xk)

xeR"
Yot = arg mino (4%, p) + 2y, ¥ 3)
Pl = PR+ (AL 4 BYHY),

wherea, anda,, are the Bregman distance with respect to functipasdy, respectively.

ADMM was introduced in the early 1970s [21,/122], and its cageace properties for convex
objective functions have been extensively studied. The doavergent result was established
for strongly convex functions [21, 22], and then extendedeneral convex functions [1[7, 18].
It has been shown that ADMM can converge at a sublinear ra k) [25,[36], andO(1/k?)
for the accelerated version [23]. The convergence of BADMNdonvex objective functions
has also been examined with the Euclidean distance [14]aMabbis distance [56], and the
general Bregman distande [56].

Recently, there has been an increasing interest in the sfu MM for nonconvex objective
functions. On one hand, the ADMM algorithm is highly sucdekm solving various noncon-
vex examples ranging from nonnegative matrix factorizgtidistributed matrix factorization,
distributed clustering, sparse zero variance discrimiaaalysis, polynomial optimization, ten-
sor decomposition, to matrix completion (see elg.| [26,[3F3/58,/55]). On the other hand,
the convergence analysis of nonconvex ADMM is generally fficult, due to the failure of
the Féjer monotonicity of iterates. In_[27], the subseda¢iconvergence of ADMM for gen-
eral nonconvex functions has been proved. Furthermoregltial convergence of ADMM for
certain type of nonconvex functions has been proved in8]L, 4

The purpose of the present study is to examine convergena®bfM with 3 blocks (i.e.,
N = 3). The obtained results then can naturally be generaliagti¢ case of ADMM with
multiple blocks. Thus, in the present paper we first consilderfollowing 3-block composite
optimization problem:

min f(x) + g(y) + h(2)
st. Ax+ By+Cz=0 4)

whereA € R™™ B € R™™ andC € R™™ are given matricesf : R - R,g: R —» R are
proper lower semicontinuous functions, amdR™ — R is a smooth function. To solve such a



problem, it is natural to extend the ADMM to the following for
X1 = arg minL,(x Y, Z, p¥)
xeRM

¥+l = arg minL, (¥, y, 2, p)
yeR™

A+l _ argng]{ing L, (L, YL 7 pk) (5)
Pl = K g (AN 4 By 4 C24)
where the augmented Lagrangian functign: R™ x R™ x R™ x R™ — R is defined by
La(X Y,z p) := f(X) + 9(y) + h(2) + (p, AX+ By+ C2 + %||Ax+ By+ C4%. (6)

Unlike the conventional ADMM with 2 blocks, the convergerafealgorithm [%), called the 3-

block ADMM henceforth, has remained unclear even for corstgiective functions. Although

it is not necessarily convergent in generall[13], the 3+hlA®DMM does converge under some
restrictive conditions; for example, under the strong ety condition of all objective func-

tions (see e.g/[25]). Recently, Li, Sun, and Toh [32] pramba modification of algorithni {5),

called the semi-proximal 3-block ADMM as follows

X<+l = argxreTszinrll Lo (X Y, 2 09) + 3lIx = X414,
yert = arg min Lo (XL, y, 2 p) + 3lly — YN,
21 = arg minL, (X4, Y4, 2 p) + 3llz- 291,
DL = pk 4 o(AXCL + By 4 CZ+Y)

where]| - ||I1; denotes ellipsoidal norms= 1,2, 3. They proved the convergence of the algorithm
whenf, g, h are all convex and one of them is at least strongly convex.

Motivated by Bregman ADMM, we propose to use the followingl8ek Bregman ADMM
for solving the optimization problenil(4):

()

X = arg minLa (6,2 p) + 24(x X9
ykrl = argyng Lo (XL, Y, 24 p9) + Ay (Y, ¥)
7+l = argygF\{inrsl Lo (XL y%* L Z p4) + a,(z 2
Pl = pk o+ a(AXET + Byt + CZ24Y)

where, as mentioned beforgy, A, anda, are the Bregman distance associated with functions
o, ¥, andyp, respectively. In the present paper, our aim is to justify ¢bhnvergence of 3-block
BADMM under nonconvex frameworks. We will show that the 84k BADMM can converge

if the objective function is subanalytic and mat@ixhas full-row rank.

(8)

2. PRELIMINARIES

In what follows, R will stand for then-dimensional Euclidean space,

ooy =Xy = 3" x¥, Ml = V00,
i=1
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wherex, y € R" and T stands for the transpose operation.

2.1. Subdifferentials. Given a functionf : R" — R we denote by dorhthe domain off,
namely, donf := {x € R": f(X) < +o0}. A function f is said to be proper if dofh= 0; lower
semicontinuous at the poing if

imi >

I|Xm_>|Qf f(X) = f(xo).
If fis lower semicontinuous at every point of its domain of défini, then it is simply called a
lower semicontinuous function.

Definition 2.1. Let f : R" —» R be a proper lower semi-continuous function.

() Given xe domf, the Fréchet subgferential of f at x, written bﬁf(x), is the set of all
elements & R" which satisfy

im inf fy) = f(X) —(uy-x 50
YEX Yo X [IX =Wl

(i) The limiting subdferential, or simply subgferential, of f at x, written by f(x), is
defined as

Af(X) = {ue R": X< > x, f(X) - f(x),
UK € 9f (%) > u k > oo}.

(i) A critical point or stationary point of f is a point*¥n the domain of f satisfying e
of(x).

Definition 2.2. An element Ww:= (X*,y*, Z, p*) is called a critical point or stationary point of
the Lagrangian function J.defined as irf6) if it satisfies:

{ ATp* € —af(x*), BTp* € —ag(y"),

—_— B 9)
CTp* = —-Vh(z'), AX + By* + CZ = 0.

The existence of proper lower semicontinuous functionspangerties of subdlierential can
see [37]. We particularly collect the following basic prdjes of the subdterential.

Proposition 2.1. Let f : R" - Rand g: R" — R be proper lower semi-continuous functions.
Then the following holds:

0] 5f(x) c 0f(x) for each xe R". Moreover, the first set is closed and convex, while the
second is closed, and not necessarily convex.
(i) Let(u¥, x¥) be sequences such th&tse x, Uk — u, f(XX) - f(x) and & € df(x¥). Then
ue af(x).
(iii) The Fermat'’s rule remains true: ifpe R" is a local minimizer of f, thengds a critical
point or stationary point of f, that i€) € 9 f(xg).
(iv) If f is continuously dferentiable function, thefi(f + g)(X) = Vf(X) + g(X).



A function f is said to bes-Lipschitz continuou¢ts > 0) if

£ — £l < £elix =V,

for anyx, y € domf; u-strongly convexXu > 0) if

f9) = 109+ (€(9.y =% + 5lly - xIP. (10)
for anyx,y € domf andé&(x) € af(x); coerciveif
| I|i|m f(X) = +o0. (11)

2.2. Kurdyka-t.ojasiewicz inequality. The Kurdyka-tojasiewicz (K-L) inequality was first in-
troduced by tojasiewicz [38] for real analytic functionadahen was extended by Kurdyka [29]
to smooth functions whose graph belongs to an o-minimatstra. Recently, this notion was
further extended for nonsmooth subanalytic functions [4].

Definition 2.3 (K-L inequality). A function f: R" — Ris said to satisfy the K-L inequality a x
if there exists; > 0,6 > 0, ¢ € .47, such that for all xe O(xp, 5) N {x: f(Xo) < f(X) < f(X0) + 1}

¢’ (f(x) - f(x)dist(Q o (x)) > 1,

wheredist(xo, 0f(X)) = inf{llxo — Il : y € df(X)}, and .7, stand for the class of functions
¢ : [0,7) — R* with the properties: (a) is continuous orf0, i); (b) ¢ is smooth concave on

(0,m); (€) 9(0) = 0,¢'(x) > 0,Vx € (0,7).
The following is an extension of the conventional K-L ineliyd5].

Lemma 2.2 (K-L inequality on compact subsetshet f : R" — R be a proper lower semi-
continuous function and l€2 € R" be a compact set. If f is a constant Orand f satisfies the
K-L inequality at each point i, then there existg > 0,6 > 0, ¢ € o7, such that for all ¥ € Q
and for all xe {x € R" : dist(x, Q) < §)} N {xe R": f(xg) < f(X) < f(xo) + 1},

o' (f(x) — f(xp))dist(Qaf(x) > 1.

Typical functions satisfying the K-L inequality includer@tgly convex functions, real ana-
lytic functions, semi-algebraic functions and subanalfuinctions.
A subsetC c R" is said to besemi-algebraidf it can be written as

C= U ﬂ{x €eR" g j(¥) =0,hj(x) <0}

j=1i=1
whereg; j, hij : R" — R are real polynomial functions. Then a functibn R" — R is called
semi-algebraidf its graph

G(f) = {(xy) eR™: f(x) = y)

is a semi-algebraic subset if"R. For example, thég norm||xllq := X Ix[Ywith 0 < g < 1, the
sup-norm||X||. := max |x|, the Euclidean normjx|, ||Ax — b||g, [IAX — bl| and||AX — b||., are all
semi-algebraic functions for any matux[5, [48].



A real function on R is said to banalyticif it possesses derivatives of all orders and agrees
with its Taylor series in a neighborhood of every point. Foeal functionf on R", it is said to
be analytic if the function of one variablg(t) := f(x + ty) is analytic for anyx,y € R". It is
readily seen that real polynomial functions such as quidfanctions||Ax — bj|* are analytic.
Moreover, thes-smoothed/q norm||X|l.q := ¥;(x? + £)¥2 with 0 < g < 1 and the logistic loss
function log(1+ e!) are all examples for real analytic functions[48].

A subsetC c R"is said to besubanalyticf it can be written as

C= U ﬂ{x €eR" g j(¥) =0,hj(x) <0}

j=1i=1
whereg; j,hi; : R" — R are real analytic functions. Then a functién: R" — R is called
subanalyticif its graph G(f) is a subanalytic subset in""R. It is clear that both real analytic
and semi-algebraic functions are subanalytic. Generglbaking, the sum of two subanalytic
functions is not necessarily subanalytic. It is known, hasvethat for two subanalytic functions,
if at least one function maps bounded sets to bounded sets titleir sum is also subanalytic,
as shown in[[4,_48]. In particular, the sum of a subanalytiecfion and a analytic function is
subanalytic. Some subanalytic functions that are widebdwege as follows:

(i) 1IAX— bl + Allyllg;

(i) IAX=bI? + A %i(y7 + &)V

(i) 3P, log(1+exp(ci(ax+ b)) + Allyllg;

(iv) 33", log(1+expEci(a x+ b)) + A %i(y? + &) %2

2.3. Bregman distance. The Bregman distance, first introduced in 196/7 [8], playsnapor-
tant role in various iterative algorithms. As a generalmabf squared Euclidean distance, the
Bregman distance share many similar nice properties of tiatidean distance. However, the
Bregman distance is not a real metric, since it does notfgdkie triangle inequality nor sym-
metry. For a convex dlierential functionp, the associated Bregman distance is defined as

2g(X.Y) = $(X) — B(y) — (Vo(Y), X - Y).
In particular, if we letp(X) := ||x||?> in the above, then it is reduced & — yi|?>, namely, the
classical Euclidean distance. Some nontrivial examplé&redman distance includel[2]:
() Itakura-Saito distance};; xi(log x/vi) — 2.i(% — Vi);
(i) Kullback-Leibler divergencey’; x(logxi/Vi);
(iif) Mahalanobis distancd|x — y||é = (Qx, x) with Q a symmetric positive definite matrix.
The following proposition collects some useful propertié8regman distance.

Proposition 2.3. Let ¢ be a convex dierential function anday(x,y) the associated Bregman
distance.
(1) Non-negativity:A4(X,y) > 0, 24(x, X) = Ofor all x,y.
(i) Convexity:a,4(X,Y) is convex in X, but not necessarily iny.
(iif) Strong Convexity: 1§ is 6-strongly convex, then,(x,y) > %llx —y|? for all x,y.
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2.4. Basic assumptions.In the research of present paper, we will make the followisguap-
tions:

Assumption 1. We assume that functionsgth, C, ¢, ¢, ¢ in problem (@) have the following
properties:

(al) (CCTx, %) = [IXI2, > oclIX|?, ¥x € R™, namely, C is full row rank;

(a2) Vh, V¢, V¢, Vo are Lipshitz continuous;

(a3) either f org, either g ory, and either h orp are strongly convex;

(a4) f + g+ his subanalytic,

whereoc and ¢, are both positive real numbers.

In implementation of BADMM (), the parameter, and the smooth convex functions iy,
andy should be regularized. We further assufssumption 2
A(n + €)% + £2]

H30C ’
whereus is the strong convexity cdiécient ofh or ¢, and¢, and/,, are respectively the Lipschitz
codficient of Vh andV.

We remark that conditions (al)-(a2) above are standardrgggns even for convex settings.
Condition (a3) is used to guarantee théisient descent property of iterates, and condition (a4)
is a basic assumption assuring that the funcfipto be defined in the next section, can satisfy
the K-L inequality, which in turn will imply the global convgence of the proposed algorithm.

The smooth convex functions in the Bregman distance areaasily specified; for example,
takeo(’) = w(:) = ¢(-) = %H -]1%. Note that if¢ is u1-strongly convex, then its Bregman distance
satisfies

a > (12)

8g(xY) 2 G x=yP, (13)

which follows from Propositiof 2]3.

3. CONVERGENCE ANALYSIS

In this section, under the Assumptions 1 and 2 we firstly giwmrvergence result for the
BADMM with 3-block procedure[(B), and then extend this résalthe N-block (N > 3) case.
The main results are presented in the subseLiidn 3.4.

For convenience, we first fix the following notations:

205 1 A+ L) AL

o0 =———, 01 = 5 MiN|uy, o, 3 - :
aoc 2 aoc aoc

u=XY,2,w=(XY,zp),W=(XV,zp2),
uk = (Xk’ yk’ Zk)’\Nk = (Xk’ yk’ Zk’ pk)’V\A,k = (Xk’ yk’ Zk’ pka Zk_l)’

Wil = (X% + Il + 12122, Iwdlz = 11X+ iyl + 12,
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whereu; is the strong convexity cdigcient of f or ¢, andu, is the strong convexity cdicient of
gory. Clearly bothog ando1 are positive by our assumptions. Also, we define a new functio
L:R™ xR x R® x R™x R — R by

LOR) = Lo(W) + oollz— 22 (14)

3.1. Some lemmas.We establish a series of lemmas to support the proof of cgenee of
BADMM with 3-block procedure[(B).

Lemma 3.1. For each ke N
1P - PP < 2(5“ “") —— 2 - 2P+ E’nzk - 2N, (15)
Proof. By our assumptions o@, we have
ICT(p* ~ PIP = (CCT (P ~ P, P~ P > ol - P2 (16)
Applying Fermat's rule t@-subproblem in[(B), we then get
Vh(Z4Y) + CT(p* + a(AXY + Bt + CZEY)) + V(L) — V() =

Note thatp*! = pK + a(AZ+! + By*1 + CZ*1). It then follows that

Vh(Z*Y) + CTp*t + Vp(Z4Y) - V() = 0, (17)
so that
ICT (P - PP

= [IVh(Z*1) = Vh(Z) + (Ve(Z4h) - Ve(2)) + (Vp(Z) - VeZ)IP

< (IVh(EZ*) = VA + IVe(Z) = Vo)l + IVe(Z) - Ve(Z)I)?

< (GnllZt = 29 + €12 = Z9H1 + £ 012 = 27

< 2 + L)AIZTE = 297 + 26212 - 27Y2
This together with[{16) at once yields inequalityl(15). |

Lemma 3.2. For each ke N

2
Lo (WD) < Ly (WK) + (% - *5] 1241 — 22

o2 (18)
+ —||zk 22 = St - xR - ERpyet 2,
Proof. First we show that if eithef or ¢ is strongly convex, then it follows that
Lo h 9, 2 P < Loy, 2 1) 2“ X = X2, (19)
1
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In fact, if f is strongly convex, theh,(x, Y&, 2, p) + a4(x, X¥) is strongly convex with modulus
11, and thus inequality (19) follows frorh (IL0). Let us now jlisthe case wheneveris strongly
convex. Asy**1 is a minimizer ofL,(x, ¥, Z, p¥) + a4(x, xX), we have

Lo(X ¥ 24 1) < La(x ¥ 24 9 = 26(X X9
< L, (x Y, 2, XKL k2,
(G828 ) 2mu X
where the last inequality follows frorh (IL3). Similarly, wave
OO Y 2 P < Lo (X v, 2 ) - Zyinyk+1 Al
2
Lo (XL Y, 298, ) < Lo (X Yt 24 ) - Zyinzk+1 - 297,
3
and from the last equality in{8) we have
1
L k+1 | k+1 £<+1 k+1y _ L, k+1 | k+1 Zk+1 k Spk+l Ak 2.
(KLY, 20, ) = Lo (X, e, 28, )+~ =
Adding up the above formulas, we get

1 1
La(WKY) < Lo(wWK) + amok+l — PNIZ = S IXL - 2

2u
L en e 1Zkllzk2 (20)
1Y Tk ]
2#2” | 2/13” I
This together with[(155) yields inequality (118) as desired. m|

Lemma 3.3. For each ke N
LAY < D) — ora (Xt = X2 + Iy — Y2 + 112 = 299).
Proof. It follows from lemmag 31 and 3.2 that
L, (XL L Al gy |k vk ok gk

2 2
< (—2(5“ i ’5) 12t = 297 + ﬁnzk -2

aoc
2 ” k+1 k”2 /12||yk+1 yk”z
which implies
Lo (X Y8, 292, 00 4 gl 24 — 299
< Lo(X Y5, 2 P9 + orollZ = 2742
1z 2+ 6 23

|zk 12
2 aoc
- %nxk*l — X2 - %Hyk” — P

< Lo (X, Y6, 2, p) + orollZ = 27112
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— a1 (XY = 52+ Iyt = YN 2 + 12 = 24P
Then lemm&-3]3 follows from our notations. O

Lemma 3.4. If the sequencél} is bounded, then we have
Z WK — WEH L2 < oo,
k=0

In particular, the sequencink — w+|| is asymptotically regular, nameljyX — w1 — 0 as
k — co. Moreover, any cluster point offais a stationary point of the augmented Lagrangian
function L, defined as irfg).

Proof. We first show that the sequenge} is bounded. Indeed we deduce from EqJ (17) that
ICTPI? = IVh(Z) + Vep(2) - Ve (Z I
< (IVh@)Il + €l1Z = Z2H)
< 2(IVh@)I1? + )12 - 2741
SinceC has full row rank, we have
acllp? < 201N + 212 - Z7H). (21)

Note that{u¥} is bounded. This implies that the sequeript is bounded and so are the se-
quencegwK} and{WX}.

Sincew® is bounded, there exists a subsequemtiesd that it is convergent to some element
W*. By our hypothesis, the functionis lower semicontinuous, which leads to

liminf C(AX) > C&*),
J—)DO
so thatL (W) is bounded from below. By Lemnfia 3.B(#¥) is nonincreasing, so th&iWwi) is

a convergent sequence. Moreolg@X) is also convergent arid(w¥) > L(W*) for eachk.
Now fix k € N. By Lemmd 3.8, we have

Kk
o1 ) XK =X+ I = PRI+ 112 - 2P
i=1

k

< LW - Lt = Lty - Dt
i=1

< L) - L) < co.

Moreover, by inequality[(15), we see thg{,lIp* — P12 < co. This implies 332, WK —
W12 < o0, and hencgwk — WK - 0.

Letw* = (X*,y*, Z", p*) be any cluster point of¥ and letw®i be a subsequence wf converg-
ing tow*. It then follows from algorithm[{§8) that

Pl = PR o (AT 4 By 4 C &Y,



—0f (XYY 5 ATPS + @ AT(AXTL + By + CZ) + V(X)) — Vg (X¥)
= ATP L 4+ @ATB(YK — Y1) + @ ATC(Z — 1) + V(XK L) — VXY,
—0g(y") > BT + aBT(AX"! + Byt + CZ) + V(') - V(v
= BTp"! + aBTC(Z - 2°1) + Vy (Y - Vu(y"),
—Vh(Z*Y) = CTp* + aCT(AXTY + By + CZ*Y) + Vp(Z) — Vp(Z4Y)
= CTpL + Vp(Z) — V().
Since|wK — wkt1|| tends to zero, letting — oo in the above formulas yields
ATp® € —0f(X’), BTp" € —ag(y"),
C'p" = -Vh(z'), AX + By +CZ =0,

which implies thatv* is a stationary point off,,.

Lemma 3.5. There exist > 0 such that for each k
dist(Q ALER)) < w(IX = X+ Iy = Y+ 112 = 29+ 112 = X)),
Proof. First, we deduce from algorithria](8) that
AL OWHYY = F (XL + AT PR 4 @ AT(AXTL + By + C 24D,
AL, (WKL) = ag(y<™t) + BT P + @BT(AXTE + Byt 4 CZ4Y),
LAWY = Vh(ZHY) + CTp*L + aCT(AX + By + C£*Y)
+ 200(24t - ),
G0 = o2~ 29,052+ = ~(p* — ).
Second, we apply Fermat's rule to algoritiim (8) to get
0 € Af (XY + AT + AT(AXY + By + CZ) + V(X — Vg (xK),
0 € ag(y“t) + BTp* + aBT(AXY 4+ By + CZ) + Vy (Y1) — Vy(¥9),
Substituting this into[(22) an@ (23), we obtain
AL (WD) 5 o ATB(YH — vK) + @ ATC(Z* - 29
+ Vg(x) = Vo(x+h) + AT(p - ph,
AL, (W) 3 aBTC(Z* - ) + BT(pH*! - p¥)
+ V(Y ) - Vpy ).
We also substituté (17) inte (R4) to get
AL W) = Vp(2) = Vp(Z4h) + CT(p*! = p) + 2070(2* - 29),

where the last equality follows frorhl(8).

11

(22)
(23)

(24)

(25)
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As V¢, Vi, Vg are all Lipshitz continuous and matricésB, C are all bounded, the above
series of estimations show that there exigts 0 such that

dist(Q ALWF1)) < ko(Ix — XL+ Iy — ¥+ 11290 = 2 + 1P = PNy, (26)
On the other hand, it follows from Lemrha 8.1 that

V2(tn + £,) V2¢, _
k+l 4k 14 +1 ¥ _ 1
9 = Pl < — = 1248 - 2 + ﬁni‘ ol (27)
V2(th + £,) +1 -1
< ?(nzk - 2+ 12 - 271, (28)

Letting«y := V2(¢h + £,)/ \oc, we then have

1P = P < k(U2 = 291+ 12 = 271 (29)
Letk := (k1 + 1)(ko + 1). Hence Lemma_3]5 follows immediately. O

3.2. Convergence analysis.

Theorem 3.6. Under the Assumptions 1 and 2, if the sequenépis bounded, then
DI = Wy < oo,
k=0

In particular, the sequencgv®} converges to a stationary point of, ldefined as ir{g).

Proof. From the proof of Lemm@a 3.4, we see that the sequéfiteis bounded. Lef stand for
the cluster point set of. Take anyw" € Q and letw®i be a subsequence of onverging to
W*. Since by LemmB&3]3 the sequerd@X) is convergent, it follows that

L) = jlm LK) = lim LK),

so that the functior.(-) is a constant og.
Let us now consider two possible casesl@WX). First assume that there exigse N such
thatL(W) = L(#*). Then we deduce from Lemria B.3 that for dny ko

o1 W —wWR? < CORK) — L) < CRke) — LW = 0,

where we have used the fact tHAti¥) is nonincreasing. This together with {26) implies that
(WK) is a constant sequence except for finite terms, and thugdoé is finished in this case.

Let us now assume th&(W*) > L(W*) for eachk € N. By Assumption 1, It is easy to know
thatL(:) is a subanalytic function and thus satisfies the K-L ineiualhen by Lemma2]2 there
existsn > 0,6 > 0, ¢ € .47, such that

¢ (L(W) — COA))dist(Q oL (W) > 1.
for all W satisfying dist¢/, Q) < § and L(W*) < L(W) < L(W*) + 5. By definition ofQ we have

lim dist@i¥, Q) = 0. This together with the fadt(W¥) — L(W*) implies that there exists; € N
such that dist¥, Q) < § andL(W¥) < L(W*) + n for all k > k;.
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Let us fixk > kq in the following. Then the K-L inequality
dist(Q AL(W))er(LORK) — W) > 1
holds, which along with Lemnia 3.5 then yields
1
or(LOAK) — L(@))
< KX = X+ Iy = Y+ 12 = 27+ 11297 = Z271),
By Lemmd 3.2, the last inequality and the concavitypahow
W — wH P < LK) - Lart)
= (LOWF) - L)) - (CORT) - Cw))
_ (L) - L) — (L) — L)
- @r(LOWK) — L(&))
< KX = X+ Y = Y+ 112 = 27N+ 1277 = Z27N)
x [p(L(WH) - COW)) — (L) = LR,

< dist(Q L (W< 1))

or, equivalently,
X4 = X2+ [y = R 12 - 2P
< O T Iy =y T 1 = 2 12— 2
X [p(LOAK) = LW)) — (LA = L))
We thus have
30X = X+ Ny = Y+ 1124 - 249)
< 3VB(IXH = X + YL = YIP + 1124 - 29712
< 21X = XU+ Iy = YU (12 - 2+ 11297 - 22

X %[w(ﬁ(\ﬁ/k) - L)) — (L) - L) 2. (30)

On the other hand, we observe that
20X = XY+ Iy = YU+ 12 = 27N+ 122 = 22

X %[w(ﬁ(\ﬁ/k) - L@)) — (Lt — Loy H2

<X = X Y = Y 112 = 2 1122 - 2
+ %[go(ﬁ(w‘) — L)) — @(LOAFT) — CLEam)],
1
which along with[(3D) yields
3 = X+ Iy = Y+ 12T - 29)
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< X = T Y = Y 12 = T 122 - 2
2 [sD(L(Wk) LOW)) — (LAY — LOR))]

Hence we have

Kk
D30 =X+ 1y =y + 12 - 27

i=kg
k
< SUIK = XY+ Iy =y 2 - 274 12— 272))
i=ky
27K o
Z[w(L(W) - L)) - (L) - L)),

Ik1

Rearranging terms in the above inequality, we obtain

k k k
2) X =X +2) Iy -y i+ Y12 -2

i=ky i=kq i=ky
< Z(nx XH) = X = )
i= k1
£y =y =1y =y
i=ky

k
+ (12 =274 =12 = 2

i=ky
k
+ (2= 272 - 12 - 27Y)
i=kq
27K +1
Z[so(L(W') LA)) - (L) - L))

I|(1

= [ — | — I — XL yRat -y R -y
+ (12970 = 297 4 202 - 29— 1K - 2 - 2K - 2
27k

+—[<p(L(Wk1)—L(W*)) Q(LOAAY) — LOA))]
< |IXe 1— k1||+||yk11—ykl||+||zk1 - 2972
+ 2|24 — 29° 1||+ so(L(M/O)—L(W))

where the last inequality follows from the fact the_(W<*) — L(W*)) > 0. Sincek is chosen
arbitrarily, we deduce thaEp o(IX< — X<L|| + Iy — v + [|Z - 241))) < co. By inequality
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@9), it then implies thal >, lIpX — P+l < oo, from which 322 WK — wk*L|| < oo follows.
ConsequentlywX} is a convergent sequence. This completes the proof of ThEBI@. O

3.3. Boundedness.In the previous theorem, we have assumed the boundedndsssefduence
{ug}. This assumption is not restrictive in general. There aneadly various sfficient conditions
ensuring the boundedness of the sequgunge We present such a licient condition below.

Theorem 3.7.If (al1)-(a3) in Assumption 1 hold and the following (b1)-lafe satisfied:
(bl) inff(X) = f* > —o0, inf g(y) = g* > —co0 and there existgy > 0 such thatinf{h(z) —
BollVh(DII?} = h* > —co;
(b2) f(x) + g(y) is coercive, nameim mingixiyin—e T(X) + 9(y) = +o0;
(b3) either H2) — BollVh(2)|I? is coercive or C is square;
(b4) a > ag where,

A(bn+,)?+(2] . ) i
v = max(,gofrc’ %) if h(2) - BollVh(2)|I? is coercive
- 2,02
IC71|]2 max(fh, w) if Cissquare
(4

then the sequendeX} is bounded.
Proof. First we deduce from Eql_(21) that

1 2 _

(1P < ——IIVh(Z)II* + oollZ — 271,

a aoc
which together with the definition df gets

k
LA = £(X) + 90F) +h(Z) - énpkn2 + ool = 2P + SIAX + By + CZ + %nz

k
> £ + g(yS) + h(Z) - %uvmz")n2 + %llek + By +C&+ I%||2

> 10+ 00) + h) ~ oIV + Sk + By Cd+ 2

wheregy is any constant such that §{z) — BollVh(2)|[?} > —co andh(z) — BollVh(2)|I* keeps
coercive no matter whethé&ris regular or not. Thus from the monotonically decreasirupprty
of {L(#)}, we obtain

LAY > F(X) + g% + h(Z) - BollVh(Z)I.
which then implies
f(X) + g(y) < LAWY — h* < o0
and
h(Z) - BollVh(Z)I? < LAY - £ — g < o0

By condition (b2), this yields the boundedness{xf and{y*}, and the boundedness @f} as
well whenevemh(z) — BollVh(2)||? is coercive.
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Similarly, from Lemmd_3.3, we can obtain
o2 = 2P < LAY = (F* + g + h*) := My < o, (31)

which shows the boundedness i< — Z~1||}. Now, let us assume that the functidz) —
BollVh(2)|? is not coercive but the matri@ keeps nonsingular. We then justify the boundedness
of {Z} in this case. In fect, by using again Lemnia 3.3 and inequalifyl (31), we get

Kk
M
1A + B)}<+Ci<+%|l < Tla

and using the inequality

K
1
A + By + CZ + %n > [|CZ| - A + By - Enpkn,

1 M«
IC&| - Enpkn < \/71 + My, (32)

whereM := sup||AX< + ByK|.. It thus follows from Eq.[{1l7) and condition (c3) that

we then have

1PN < 1ICT)HIICT P = IICHHliCT X
< ICTHIIVA(Z) + Ve (Z) - Vo(Z I
<IICHIIVhE)N + €112 = 27H)).
With any fixedz*, we clearly have
IVh(Z9II = IVh(Z) — Vh(Z)I| + IIVh(Z)]
< GlIZ = Z|| + IVh(2)
< (2 + 1IZ1) + IVh(@)I,
and furthermore,
1K1 < ICTHH{En(IZN + 1IZ°1) + IVl + €l1Z = 271}

Hence we have

L 1
[[eZal SIPl = o 1||||zk|| Lo
Zic 1”Hf‘ll - & {121+ 1Z°1) + V@I + €12~ 271}
1 1 —
Z(ucl—l” = ”5“) e e D e e

which together with[(32) implies
1 w7 M c1 IC ‘1||
( _ a” “)ni‘n < \/71“ M+ ] "(€h||z*||+||Vh(f)||) “"nzk A

I
c-1
< )y, 4 10 (€h||z*||+||Vh(z*)||+€ \/M )
2 o1
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where the last inequality follows frofi(B1). By conditiomjbthe sequencg®} is then bounded,
and so is the sequen¢at}. o

Remarkl. It is easy to see that function(X) = ||Ax — bj|? for any matrixA andb satisfies
. . 2
conditions (b1) and (b3) witho = 1AL
3.4. Main results.
Combining theoremg_3.6 arid B.7, we present the followingremence theorem for the
BADMM with 3-block procedure[(B).

Theorem 3.8. If Assumption 1 and conditions (b1)-(b4) in Theolend 3.7 atisBed, then the
sequencéw} generated by procedui@) converges to a stationary point of ldefined as ir{6).

We now extend this result to tié-block case. Thus, let us consider the following composite
optimization problem:
min f1(xg) + f2(xz) + -+ fu(Xn)
(33)
St AiXy + AoXo + -+ - + ANXN = 0,
whereA e R™" i : R > R,i =1,2,---,N -1 are proper lower semicontinuous functions,
andfy : R™ — R is a smooth function. The associated BADMM algorithm takesform:

XL = arg min Lo(Xe, X, -, XK, P9 + 8, (Xa, X)
X €RM
k.l - I k+1 k+1 k k (34)
W= arg, TR Lo O+ XN21 XNs P + 2y (XN, X))
N
P = PR (AT AT+ AT
whereay,,i =1,2,--- ,N are the Bregman distances associated with funcipasd the corre-
sponding Lagrangian functidn, : R x R x - .- x R™ x R™ — R is defined by
N N o N
L,(Xq, X2 -+, XN, = fi(x) + CAXD) + = __2. 35
o(X, X2+, X, P) 21: (%) ;m AX) 2||;Am|| (35)

It is then straightforward to establish a similar convergeresult with Theoreimn 3.8.

Theorem 3.9. If the following (d1)-(d7) are satisfied:

(d1) (ANALX X) = ||x||iL > o alIXI%, VX € R™, namely, A is full row rank;

(d2) VN, Vei,i =1,2,--- ,N are Lipschitz continuous;

(d3) either for ¢, i =1,2,--- , N is strongly convex;

(d4) fy + fo +--- + fy is subanalytic and coercive;

(d5) inffi = £* > —c0,i = 1,2,--- ,N - 1, and there existgy > 0 such thatinf{fy(xn) —
BollV En(xn)IZ} = £ > —oo;

(d6) either &y — BollV fnll? is coercive, or A is square;
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(d7) @ > ag where,
o A+l )2+€§N]
Booay’ HNO Ay ’
A[(L1y +loy )2+€§N]
HUN ’

max if fn — BollV fnll? is coercive,

agpg =

AR max(ffN, if Ay is square

wherepuy is the strong convexity cgiieient of § or ¢, and£s, and/y, are respectively
the Lipschitz cogcient of Vfy and Vey,

then the sequende, x§, - - , XK, p*} converges to a stationary point of, Idefined as ir35).

Remark2. We notice that whenever arly is strongly convex, the functios; in the Bregman
distance can be taken as zero in itk update of proceduré (B4).

Remark3. For convenience of applications, we list some specificatmhnTheoreni 319 as fol-
lows.

(i) Underdetermined linear system of equations:this case,fi = 0,i = 1,2,---,N, and
m < %, ni. The problem[(3B) is degenerated to

min 0
(36)
St Ay +Apxo+---+Ayxn =0
which amounts to solving the underdetermined linear systeeguations:
Ax=0 (37)

whereA = [A, Ao,--- ,An] and x = [x{xg X I"- In this case, the BADMM algorithm
takes the form:

k
k+1 in @ k k P 2 k
X arg min $||Apx +AX2+-'-+A Xy + + Ap, (X1, X
1 gxleRnl 2” 1AL 2 NAN a” ¢1( 1 1)

k+l  _ oa k+1 k+1 o2 k
XN = arng’l‘Fiﬁ‘N SIALXT + -+ AncaXTy + ANXN + I + Agy (XN, X))

Pl = Pt (AT + AL 4 AgKKT).

We easily check that in this special case all the assumpitioflseoreni 3.9 are met whenever
the matrixAy is nonsingular. So, by Theordm B.9, the proceduré (38) cametge to a point
(X7, %5, -+, X3 P). The point &, x5, - -+ , X)) is clearly a solution ofl(37) by the last equation in
(38). We notice that the same problem was studied by Sun, hd&@ [41], and they considered
the case thah is a square nonsingular matrix. To solve the linear systemqoftions, they
suggested a novel randomly permuted ADMM and proved itsarpeconvergence.

(i) Two blocks case: N= 2. It is easily seen that Theordm B.9 in this case is degenetated
convergence of the conventional BADMM procedure:

lerl = a_rg)(lrenRip1 Lo (X1, x'é, Pk + Agy (X1, XII)
Xlg—l - a‘rgx rl]Rl!']Z La(xljl(_+l’ X2, pk) + Af/752(X2’ Xlé) (39)
2

pk+l — pk + CL’(A1X|:|(_+1 + A2X|§+1)
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for the problem:

min f]_(Xl) + f2(X2)

(40)
St AiXy + Aoxo = 0.
Thus, Theorerh 319 includes the results established in jlaglspecial cases.
(iii) The unconstrained minimization case:
min fy(x1) + f2(x2) + - -+ fu(xn) (41)
wherefi : R" - R,i = 1,2,---,N — 1 are proper lower semicontinuous functions, and

fn © R™ — R is a smooth function. Even no constraint exists in this cassimilar Breg-
man alternative direction method (BADM) can be defined dsvi:

k+1 _ : k
(" =arg min f1(x1) + Agy (X1, X7)

= i (42)

k+1 _ ; k
XN©o=arg min NN + 2y (XN, XY)-

Following exactly the procedure of proof of Theorems 3.6 [t we can immediately obtain
the following convergence of (#2) in the setting that:

(e1) inffi= "> —c0,i=1,2---,N;

(e2) VIn, Voi,i = 1,2,--- , N are Lipschitz continuous;

(e3) eitherf; or¢;,i =1,2,---, N is strongly convex;

(ed) f1 + fo +--- + fy is subanalytic and coercive.

4. DEMONSTRATION EXAMPLES

In this section, a simulated example and a real-world ag{itin are provided to support the
correctness of convergence of the proposed 3-block BreghidviM for solving non-convex
composite problems.

Consider the non-convex optimization problem with 3-bleekiables deduced from matrix

decomposition applications (see eld.[[3,/46, 57]):
: 172 M 2
min LI+ AllSg), + EIIT - Milg 43)
stT=L+S

whereM, T, L andS are allm x n matricesM is a given observatior, is an ideal observation,

LAl = Zi“:if(m”) oi(L) is the nuclear norm of IISII% =2 a |Sij|¥/2 is the €12 quasi-

norm of S, 1 is a trade-f parameter between the spectral sparsity tglrifi and the element-

wise sparsity terniS||;/3, andy is a parameter associated with the noise level. The augthente

Lagrange function of this optimization problem is given by

a
Lo(L,S, T, A) = IILIL. + AlISI)3 + guT ~MIE +@.T = (L+9)+5IT - (L + 9. (44)
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According to the 3-block BADMMI[(B), the optimization prolnte(43) can be solved by the
following procedure

L1 = argminL,(L, S5 T AK) + a4(L, LY
L

S = argminL, (L1, S, TK AK) + 4,(S, S
S

Tk = arg minL, (L*Y, ST, AK) + a,(T, T)
T

pk+1 — pk + Q(Tk+1 —(L k+l 4 Sk+1)).

(45)

Specifyingg(-) = v() = 2 - 117, ¢(-) = 2| - ||?> and substituting these formulations into the
procedure[(45), we then obtain the following closed-forenative formulas ofi(45):

k
k+1 _ Q(Tk—Sk+%)+ylLk y1
L= Sm( a+yy ’ w+)’1)
K+l _ oTE-LM 4 B )y S
SU=HC—m v (46)
Tk+1 _uM +a(Lk+1+Sk+1—e—Y)+y2Tk
- paty2
pk+1 — pk + a(Tk+1 —(L k+l 4 Sk+1))

whereSu (A, -) indicates the operation of thresholding the singular eslof matrixA using the
well-known soft shrinkage operator, add#=(A, -) the operation of thresholding the entries of
matrix A using the half shrinkage operator [49] 60, 51, 52]. The mtoce([46) is the specifica-
tion of BADMM (B) for the solution of problem{43) with funains f(x), g(y), h(z) defined by
f(L) = ILIL, 9(S) = AlISil;)3, h(T) = 4IT = M|I? and matrices\, B, C defined byA=1,B = -,
C = -1 wherel is the identity matrix. It is direct to see that all the asstions of Theorenh 318
are satisfied. Consequently, Theoffem 3.8 can be applie@dicpconvergence of (46) in theory.
We conduct a simulation study and an application examplebédr support of such theoretical
assertion.

We first expatiate some implementation issues. Weyset « andy, = a + u in (46).
In order to avoid the tediousness of tuning the parametere exploit a dynamic updating
scheme, e.gq¢ = min(a = 1.1, amay), Whereamax is a very large constant. Due to the non-
convexity of this optimization problem it is very importailotchoose a suitable initialization. In
the following experiments, we initialized matrix by the best rank approximation of matrix
M, i.e.,L = SVD(M,r), wherer was empirically set as ceil@1 - min(m, n)); initialized matrix
Sas one zero matrix of sizex n; and then initialized matriX = L + S. Finally, we terminated
the algorithm by the criterion relChg 1e-8, where relChg is defined as
re|Chg . ||[|_k+1 _ Lk, Sk+1 _ Sk,Tk+1 _ Tk]HF

LK S THIIE + 2

(a) Simulation study. To check the validity of mode[(43) and the convergence otero
dure [46), we generated an observation matifrom givenL andS (namely, the true solution)
with Gaussian random disturbanbk and then we applied procedute(46) to recdveandS.
The square matrices of size x m are randomly generated for our simulations. The maitrix
was taken a&JVT, whereU andV are independentn x r matrices whose elements are i.i.d.
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Iogm(reIErr &relChg)
Iogm(reIErr &relChg)

0 20 40 60 80 100 120 0 50 100
iter iter

(@ o=0 (b) 0=0.2

Figure 1: Separation results in simulated data.

Gaussian random variables with zero mean and unit variaare®S taken as a sparse matrix
whose support was chosen uniformly at random with the entméformly specified in the inter-
val [-50,50]. Then, the measuremeldt was generated a4 = L + S+ N, where matrixN is
Gaussian noise with mean zero and variamée Thus,o = 0 corresponds to the no noise case
ando # 0 corresponds to the noisy case. In simulations, the paespé@t model [43) was set
as a large value %l in the no noise setting, and a value in the noisy setting frarandidate set
such that the proposed algorithm has the best performaieepdrametet was empirically set
as the valu%. The performance of the algorithm is then measured in tefrtteaelative

error defined by A
_ IIA-A"F
A relErrp = T
whereA indicates the recovery result of the algorithm, &idndicates the true result.

With the above settings and measure, our simulation reatdtshen shown in Figufé 1. In
Figure[1(a), they are exhibited the curves of the relativeraelEr, (A := L,S,T) and the
relative change relChg with respect to the iterative stefpsnano Gaussian noise is added, and
in Figure[1(b) the curves when Gaussian noise is added witdnrBeand variance® = 0.22.
From these curves, it can be seen that under the initiadizati terms of the relative error and
the relative change the procedure](46) does converge, distec

(b) An application example. We further applied the moddl (#3) with BADMNIL_(46) to the
background subtraction application. Background subitiad6] is a fundamental task in the
field of video surveillance. Its aim is to subtract the backmd from a video clip and meanwhile
detect the anomalies (i.e., moving objects). From the V\@EBEWG first download four video
clips: Lobby, Bootstrap, Hall, and ShoppingMall. Then wesh 600 frames from each video
clip and input these 600 frames into our algorithm. The patem was set as the val%.

In Figure[2, we exhibit the separation results of some framémsur video clips. From Figurel 2,
it can be seen that our algorithm can produce a clean videkgbaund and meanwhile detect

2http;//perception.i2r.a—star.edu/ta@mode!bldndex
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(d) ShoppingMall

Figure 2: Separation results in real-world video clips.

a satisfactory video foreground, which supports the viglidhd convergence of the proposed
BADMM.
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