Skip to main content
Log in

Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach

  • Research Paper
  • Special Focus on Advances in Disturbance/Uncertainty Estimation and Attenuation Techniques With Applications
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents a disturbance rejection method that is based on the equivalent-input-disturbance approach for uncertain fractional-order (FO) systems. An FO observer is used to reconstruct the plant states and estimate the disturbances. A disturbance estimator is incorporated in the construction of the FO control system to actively compensate for the entire disturbance. A robust stability condition for the control system and the parameters of the controller are derived using an indirect Lyapunov method. The presented method effectively rejects disturbances and handles modeling uncertainties without requiring prior knowledge of the disturbance. Comparison simulations on both numerical and practical examples demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y Q. Ubiquitous fractional order controls. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Porto, 2006. 19–21

    Google Scholar 

  2. Wang J F. Control Performance Analysis for Fractional Order Systems. Beijing: Publishing House Of Electronics Industry, 2010

    Google Scholar 

  3. Podlubny I. Fractional-order systems and pid controllers. IEEE Trans Automat Contr, 1999, 44: 208–214

    Article  MATH  Google Scholar 

  4. Oustaloup A, Bansard M. First generation CRONE control. In: Proceedings of Conference on System, Man and Cybernetic, Systems Engineering in the Service of Humans, 1993. 130–135

    Google Scholar 

  5. Matignon D. Stability results for fractional differential equations with applications to control processing. Comput Eng Syst Appl, 1996, 2: 963–968

    Google Scholar 

  6. Sabatier J, Moze M, Farges C. LMI stability conditions for fractional order systems. Comput Math Appl, 2010, 59: 1594–1609

    Article  MathSciNet  MATH  Google Scholar 

  7. Lu J-G, Chen G R. Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans Automat Contr, 2009, 54: 1294–1299

    Article  MathSciNet  MATH  Google Scholar 

  8. Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl, 2010, 59: 1810–1821

    Article  MathSciNet  MATH  Google Scholar 

  9. Trigeassou J C, Maamri N, Sabatier J, et al. A Lyapunov approach to the stability of fractional differential equations. Signal Process, 2011, 91: 437–445

    Article  MATH  Google Scholar 

  10. Lan Y H, Gu H B, Chen C X, et al. An indirect Lyapunov approach to the observer-based robust control for fractionalorder complex dynamic networks. Neurocomputing, 2014, 136: 235–242

    Article  Google Scholar 

  11. Mujumdar A, Tamhane B, Kurode S. Observer-based sliding mode control for a class of noncommensurate fractionalorder systems. IEEE/ASME Trans Mechatron, 2015, 20: 2504–2512

    Article  Google Scholar 

  12. Hosseinnia S H, Ghaderi R, Ranjbar N A, et al. Sliding mode synchronization of an uncertain fractional order chaotic system. Comput Math Appl, 2010, 59: 1637–1643

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao Z. Active disturbance rejection control for nonlinear fractional-order systems. Int J Robust Nonlinear Control, 2016, 26: 876–892

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao Z, Liao X. Active disturbance rejection control for synchronization of different fractional-order chaotic systems. In: Proceedings of Intelligent Control and Automation, Shenyang, 2015. 2699–2704

    Google Scholar 

  15. Wei Y, Chen Y, Liang S, et al. A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing, 2015, 165: 395–402

    Article  Google Scholar 

  16. Li M, Li D, Wang J, et al. Active disturbance rejection control for fractional-order system. ISA Trans, 2013, 52: 365–374

    Article  Google Scholar 

  17. Li D, Ding P, Gao Z. Fractional active disturbance rejection control. ISA Trans, 2016, 62: 109–119

    Article  Google Scholar 

  18. Fedele G, Ferrise A. Periodic disturbance rejection for fractional-order dynamical systems. Fractional Calculus Appl Anal, 2015, 18: 603–620

    MathSciNet  MATH  Google Scholar 

  19. Pashaei S, Badamchizadeh M. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances. ISA Trans, 2016, 63: 39–48

    Article  Google Scholar 

  20. She J H, Fang M, Ohyama Y, et al. Improving disturbance-rejection performance based on an equivalent-inputdisturbance approach. IEEE Trans Ind Electron, 2008, 55: 380–389

    Article  Google Scholar 

  21. She J, Wu M, Liu R J, et al. Robust disturbance rejection based on equivalent-input-disturbance approach. IET Control Theor Appl, 2013, 7: 1261–1268

    Article  MathSciNet  Google Scholar 

  22. Li X, de Souza C E. Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach. IEEE Trans Automat Contr, 1997, 42: 1144–1148

    Article  MathSciNet  MATH  Google Scholar 

  23. Ho D W C, Lu G. Robust stabilization for a class of discrete-time non-linear systems via output feedback: the unified LMI approach. Int J Control, 2003, 76: 105–115

    Article  MathSciNet  MATH  Google Scholar 

  24. Khargonekar P P, Petersen I R, Zhou K. Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory. IEEE Trans Automat Contr, 1990, 35: 356–361

    Article  MATH  Google Scholar 

  25. Lan Y H, Huang H X, Zhou Y. Observer-based robust control of a (1 ⩽ a < 2) fractional-order uncertain systems: a linear matrix inequality approach. IET Control Theor Appl, 2012, 6: 229–234

    Article  MathSciNet  Google Scholar 

  26. Nie Z, Wang Q, Liu R. Identification and PID control for a class of delay fractional-order systems. IEEE/CAA J Autom Sin, 2016, 3: 463–476

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11626200, 61403149), Fujian Provincial Natural Science Foundation (Grant Nos. 2016J05165, 2015J01261), Promotion Program of Huaqiao University (Grant No. ZQN-PY408), Hubei Provincial Natural Science Foundation (Grant No. 2015CFA010), and 111 Project (Grant No. B17040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., She, J., Wu, M. et al. Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach. Sci. China Inf. Sci. 61, 70222 (2018). https://doi.org/10.1007/s11432-017-9368-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9368-x

Keywords

Navigation