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Abstract In this research, the Fuzzy Production Scheduling Problem considering Mould Maintenance

(FPSP-MM) is studied. The processing time and the maintenance time are represented by triangular fuzzy

numbers. When tasks are executed based on the sequence provided by the fuzzy schedule, the real duration

of each task needs to be known and the posteriori solution with deterministic processing times is obtained.

Therefore, the concept of the schedule robustness needs to be considered for the fuzzy problem. The ro-

bustness is considered as the optimization objective except for the fuzzy makespan in this research. To

optimize these two objective functions, a Multi-Objective Pigeon Inspired Optimization (MOPIO) algorithm

is proposed. To extend Pigeon Inspired Optimization (PIO) algorithm from the single-objective case to the

multi-objective case, non-dominated solutions are used as candidates for the leader pigeon designation and a

special crowding distance is used to ensure a good distribution of solutions in the objective space and in the

corresponding decision space. Furthermore, an index-based ring topology is used to manage the convergence

speed. Numerical experiments on a variety of simulated scenarios show the efficiency and effectiveness of

the proposed Multi-Objective Pigeon Inspired Optimization (MOPIO) algorithm by comparing it with other

algorithms.
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1 Introduction

Production scheduling is to assign some tasks to limited resources so that all the constraints are satisfied,

and all the objectives are achieved. There are different types of production scheduling problems. However,

in most of these production scheduling problems, only the allocation of machines is considered. In some

industries such as the plastic production industry and die stamping production industry, the mould is

also an important resource that needs to be considered. Traditionally, resources are assumed to be

always available in the whole production planning stage. However, in real situations, some machines

may be unavailable because of the stochastic failures [1]. So, the maintenance on resources needs to

be considered when production plans are made. The system productivity is improved when resource

maintenance planning and production scheduling are integrated [2]. To integrate production scheduling

*Corresponding author (email: drniuben@gmail.com)

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of  
use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect 
post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11432-018-9693-2.

This is the Pre-Published Version.



Fu Xiaoyue, et al. Sci China Inf Sci 2

with multi-resource maintenance, some researchers have made great efforts. To minimize the overall

makespan, Wong, Chan, and Chung (2012) [3] proposed a joint scheduling strategy to solve the integrated

production scheduling with mould maintenance problem. Besides, a more complex integrated problem

that contains multiple resources and maintenance tasks was considered by Wong, Chan, and Chung

(2013) [4]. The results showed that the makespan was reduced significantly by the proposed jointly

scheduling method. In addition, another integrated problem that each job includes multiple operations

with multiple moulds was studied by Wong, Chan, and Chung (2014) [5]. Moreover, to minimize the

makespan and unavailability of the machine and the mould, Wang and Liu (2015) [6] proposed a multi-

objective integrated optimization method with NSGA-II adaption to solve the multi-objective parallel

machine scheduling problem with flexible preventive maintenance on the machine and mould. Besides,

setup time and mould maintenance were considered by Shen, Yang, Gao, et al. (2016) [7] to show the

influence of the mould maintenance on production scheduling.

In the existing research about the integrated production scheduling problem with mould maintenance,

all the information such as the processing time and the maintenance time is determinate, while this infor-

mation is undetermined because of some human-related factors in most of the real-world manufacturing

environments. Because of the uncertainty, the solutions built with the evaluated data may become an-

tiquated during the implementation. Many studies model the uncertainty processing time as triangular

fuzzy numbers and different algorithms are proposed to obtain good fuzzy schedules [8–10]. However,

the exact starting times for each task are not obtained through the fuzzy schedule and solutions to the

fuzzy problem should be treated as priori solutions. When tasks are executed according to the sequence

provided by the fuzzy schedule, the real duration of each task needs to be known and a real executed

schedule (the posteriori solution with deterministic data) is obtained. Therefore, the concept of schedule

robustness needs to be considered for the fuzzy problem except for the fuzzy makespan which is the most

often used objective [11, 12].

Pigeon Inspired Optimization (PIO) algorithm was firstly proposed by Duan and Qiao (2014) [13],

which is a novel bio-inspired swarm intelligence optimizer mimicking the homing characteristics of pi-

geons. There are two main operators of the Pigeon Inspired Optimization (PIO) algorithm: map and

compass operator and landmark operator. Since the Pigeon Inspired Optimization (PIO) algorithm was

proposed, it has been used in many real-world applications and many new variants based on it are put

forward. To achieve the target detection task for Unmanned Aerial Vehicles (UAVs) at low altitude, the

hybrid model of Edge Potential Function (EPF) and Simulated Annealing Pigeon Inspired Optimization

(SAPIO) algorithm were proposed by Li and Duan (2014) [14]. The robustness and effectiveness of the

SAPIO algorithm are shown by a number of comparative experiments with other algorithms. Moreover, a

novel Predator-Prey Pigeon-Inspired Optimization (PPPIO) [15] was proposed to solve the Uninhabited

Combat Aerial Vehicle (UCAV) three-dimension path planning problem in the dynamic environment.

The comparative simulation results show that the proposed PPPIO algorithm is more efficient than other

algorithms for solving the problem. In addition, an orthogonal PIO algorithm [16] was suggested and

employed in the training process of the Echo State Network (ESN) to obtain desired parameters. The

superiority of the orthogonal PIO algorithm is shown by comparing with several existing bio-inspired

optimization algorithms. Furthermore, an improved Pigeon-Inspired Optimization (PIO) algorithm [17]

was utilized by converting the parameter design problem for the automatic carrier landing system to an

optimization problem. A series of experiments are conducted to demonstrate the feasibility and effective-

ness of the proposed method. Comparative results indicate that the proposed method is much better than

other methods. In addition, a Gaussian PIO (GPIO) [18] was proposed for solving the optimal formation

reconfiguration problems of multiple orbital spacecraft. The feasibility and effectiveness of the proposed

Gaussian PIO (GPIO) in solving orbital spacecraft formation reconfiguration problems are verified by

the comparative experiments with basic PIO and particle swarm optimization (PSO).

Furthermore, Pigeon Inspired Optimization (PIO) is also extended to solve multi-objective problems.

Qiu and Duan (2015) [19] proposed a Multi-objective Pigeon Inspired Optimization (MPIO) to solve the

multi-objective optimization problems in designing the parameters of brushless direct current motors.

Comparative experimental results with the modified non-dominated sorting genetic algorithm are given
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to show the feasibility, validity, and superiority of the proposed algorithm. Moreover, they modified

the Multi-objective Pigeon-Inspired Optimization (MPIO) based on the hierarchical learning behavior

in pigeon flocks and an Unmanned Aerial Vehicle (UAV) distributed flocking control algorithm based

on the modified MPIO was proposed to coordinate UAVs to fly in a stable formation under complex

environments. Comparison experiments with basic MPIO and a modified non-dominated sorting genetic

algorithm (NSGA-II) are carried out to show the feasibility, validity, and superiority of the proposed

algorithm [20].

Although there are a few studies about the production scheduling problem considering mould main-

tenance, none of them consider the indeterminate processing time and maintenance time while the un-

certainty needs to be considered in practical application. Furthermore, when the fuzziness is considered

in the integrated problem, the robustness should be considered because that there may exist some d-

ifferences between the fuzzy schedule and the actually execute schedule. Moreover, as a new proposed

swarm intelligent algorithm, the Pigeon Inspired Optimization (PIO) algorithm has not been applied into

the production scheduling problem since it was proposed, and more efficient variants of PIO need to be

explored to solve real-world problems.

Based on the research gap, this paper proposes a Multi-Objective Pigeon Inspired Optimization (MO-

PIO) algorithm for Fuzzy Production Scheduling Problem considering Mould Maintenance (FPSP-MM).

The uncertainty is restricted to the fuzzy processing time and fuzzy maintenance time, which means that

the processing time and the maintenance time can be represented by triangular fuzzy numbers. There

are two objectives in this optimization problem, the fuzzy makespan, and the robustness. To extend

PIO algorithms from the single-objective to the multi-objective case, non-dominated solutions are used

as candidates for the leader pigeon and a special crowding distance is used to ensure a good distribution

of solutions in the decision space and in the corresponding objective space. Furthermore, an index-based

ring topology is used to manage the convergence speed. To evaluate the results, the Hypervolume (HV)

and the Cover Rate (CR) are used as two performance indicators. In the experiments, some instances are

generated by fuzzifying the benchmarks from the deterministic problem and some instances are generated

randomly. To show the advantages of the proposed Multi-Objective Pigeon Inspired Optimization (MO-

PIO) algorithm, MOPSO and NSGA-II which are the most popular algorithms to solve multi-objective

problems are used as the comparison algorithms.

The reminder of this paper is organized as follows: Section 2 describes the Fuzzy Production Scheduling

Problem with Mould Maintenance (FPSP-MM) problem. Section 3 proposes the Multi-Objective Pigeon

Inspired Optimization (MOPIO) algorithm. Section 4 presents the computational results acquired and

shows the superiority of the Multi-Objective Pigeon Inspired Optimization (MOPIO) algorithm. Section

5 provides the conclusions and suggestions for further research.

2 Problem description

The Fuzzy Production Scheduling Problem with Mould Maintenance (FPSP-MM) problem can be de-

scribed as follows: P jobs are allocated on Q injection machines and N injection moulds. Each problem

is denoted as P ∗ Q ∗N . At time zero, all jobs are well prepared, and all the machines and moulds are

accessible. Each job must use the mould which is given in advance. Each job can choose the machines

it uses, but not all the machines are available for all jobs. Different jobs may be performed by the same

mould. Each job cannot be performed by more than one machine at a given time slot. And each machine

cannot deal with more than one job at a given time slot. Each mould cannot only carry out more than

one job at a given time slot. The batch size and the unit fuzzy operation time of each job are given. The

total operation time of a job is the product of the unit fuzzy operation time and the batch size. The

batch size of each job cannot be split and there is no interruption during the production process of a job.

The unit fuzzy operation time of a job depends on the mould it uses. The unit fuzzy operation time is

represented by a triangular fuzzy number. The maintenance time of resources depends on the time that

the maintenance begins. The maintenance time is shorter when the maintenance is conducted earlier.
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The maintenance time of a resource depends on the longest accumulated working time of a resource (the

accumulated working time of a resource is a triangular fuzzy number, the longest means the third number

of the triangular fuzzy number). The maintenance time may be fuzzy or crisp. Only perfect maintenance

is considered, which means that after the maintenance, the condition of the resource is as good as new.

In this paper, the preventive maintenance is assumed to be able to prevent all the random breakdown-

s. Moreover, the set-up time and the quality issue are not considered in this research. The objective

is to find a good production scheduling and machine maintenance planning aiming at minimizing the

makespan and maximize the robustness. To extend the determinate single-objective problem to a fuzzy

multi-objective problem. Four problems need to be solved, the definition of the arithmetic operations

on triangular fuzzy numbers, the fuzzy maintenance time, the robustness and the Pareto dominance

relationship. These problems are given in Section 2.1-Section 2.4.

2.1 Arithmetic operations on triangular fuzzy numbers

In this paper, the unit fuzzy processing time is a triangular fuzzy number or TFN, denoted as A=(a1, a2,

a3),a1 is the best processing time, a3 is the worst processing time and a2 is the most possible processing

time. When the original deterministic model is extended to a model with uncertainty. Two difficulties

need to be solved. Firstly, the arithmetic operations of addition and maximum need to be given when

deterministic numbers are changed into TFNs. Secondly, the definition of minimal makespan also need

to be given when the makespan is a triangular fuzzy number. According to the literature [21], for two

TFNs, A=(a1, a2, a3) and B=(b1, b2, b3). The addition of them is defined as:

A+B = ((a1 + b1), (a2 + b2), (a3 + b3)) (1)

The maximum operation is defined as:

max(A,B) = (max(a1, b1),max(a2, b2),max(a3, b3)) (2)

To find the minimal makespan, three ranking criteria are given as follows:

C1(A) =
a1 + 2 ∗ a2 + a3

4
(3)

C2(A) = a2 (4)

C3(A) = a3 − a1 (5)

To compare two TFNs, the values of C1 are compared. If the values of C1 are the same for two TFNs,

then the values of C2 are compared. If the values of C1 and C2 are the same for two TFNs, then the

values of C3 are compared.

2.2 Uncertain maintenance time

In the determinate model proposed by Wong, Chan,and Chung (2012) [3], the accumulated working time

of a resource is defined as the resource age (the idle time is not included). A piecewise linear function

is used to describe the relationship between maintenance time and resource (machine or mould) age. In

practice, a mould has a higher possibility of breakdown than a machine. So, the maximum age of the

machine (MA) is longer than the maximum age of the mould (NA). Maintenance has to be conducted

after completion of the current job once a resource reaches its maximum age. In the uncertainty model,

since the processing time is a triangular fuzzy number, the resource age is also a triangular fuzzy number.

The maintenance time is decided by the worst value in the triangular fuzzy number of the resource age.

The age of the machine is represented by A=(a1, a2, a3) . The age of mould is represented by B=(b1, b2,

b3) . The relationship between the maintenance time and the resource age is shown in Table 1.
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Table 1 Maintenance time based on machine/mould age

Machine age Maintenance time Mould age Maintenance time

0 < a3 6 180 (150,150,150) 0 < b3 6 120 (150,150,150)

180 < a3 6 420 (94,94,94)+(a1, a2, a3)/3 120 < b3 6 280 (94,94,94)+(b1, b2, b3)/2

420 < a3 6 600 (160,160,160)+(a1, a2, a3)/3 280 < b3 6 400 (160,160,160)+(b1, b2, b3)/2

600 < a3 (720,720,720) 400 < b3 (720,720,720)

2.3 Objective measure

There are two objectives in this problem. The first is the fuzzy makespan and the second is the robustness.

According to Palacios, Gonzlez-Rodrguez,Vela, et al. (2017) [22], the objective related to the fuzzy

makespan C is defined as the expected value of the triangle fuzzy number:

E(C) =
C1 + 2 ∗ C2 + C3

4
(6)

The ranking method based on the expected value is shown to be convenient and it is proven that the

ranking result is similar to other ranking methods. It is obvious that the smaller the expected value, the

better the objective value. The robustness is defined as:

Rob(C) = max{(C2 − C1), (C3 − C2)} (7)

It measures the maximum possible difference between the makespan of the real execution and the most

likely estimated makespan. It is a priori measure and the smaller the value, the better the robustness.

So the objectives of this problem are shown as follows:

min E(C) (8)

min Rob(C) (9)

2.4 Pareto domination relationship

For the multi-objective optimization problems with two or more objectives to be optimized.

min f(x) = (f1(x), f2(x), ...fm(x)) (10)

where x=(x1,x2,...,xn) is an n-dimensional decision vector, f(x) is an m-dimensional objective vector.

The n-dimensional space comprised of all the possible values of the decision vector x is known as the

decision space, and the m-dimensional space consisting of all the possible values of the objective vector

f(x) is the objective space. There are many different solutions for multi-objective optimization problems

and these solutions can be compared based on the Pareto dominance relationship: Given two feasible

solutions x and y , solution x is said to dominate solution y if fi(x) 6 fi(y),i = 1, 2, ...m and there exists

at least one j ∈ 1, 2, ...m so that fi(x) < fi(y) . A solution is said to be non-dominated if it is not

dominated by any other solutions. The set of all the non-dominated solutions in the decision space is

called the Pareto-optimal Set (PS). The Pareto Front (PF) is the set of all the vectors in the objective

space that corresponds to the PS.

3 Optimization methodology

3.1 Basic pigeon inspired optimization

Pigeon Inspired Optimization (PIO) simulates the homing behaviors of pigeons. There are two main

operators in the algorithm.

(1)Map and compass operator: Through shaping the map in their brains by magnetoreception, pigeons

are able to sense the earth field. Moreover, pigeons adjust the directions based on the altitude of the sun,
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which has the same function as a compass. When pigeons fly to their destination, they rely less and less

on the sun and magnetic particles. Each pigeon has a position Xi and a velocity Vi in a D-dimension

search space. Both the positions and the velocities of the pigeons are updated in each iteration. The new

position Xi and velocity Vi of pigeon i at the tth iteration can be calculated by the following equations:

Vi(t) = Vi(t− 1)e−Rt + rand(Xg −Xi(t− 1)) (11)

Xi(t) = Xi(t− 1) + Vi(t) (12)

where Vi(t − 1) and Vi(t) are the velocities of the pigeon i at (t − 1)th and tth iteration. Xi(t − 1) and

Xi(t) are the positions of the pigeon i at (t − 1)th and tth iteration. R is the map and compass factor,

rand is a random number and Xg is the current global best position, and which can be obtained by

comparing all the positions among all the pigeons.

(2) Landmark operator: The pigeons will depend on landmarks that are near them when the pigeons fly

close to their destination. They will fly directly to the destination if they are familiar with the landmarks.

They will follow the pigeons who are familiar with the landmarks if they are far from the destination

and unfamiliar to the landmarks. In the landmark operator, half of the number of pigeons is decreased

in every generation which means that the pigeons that are far from the destination and unfamiliar with

the landmarks will follow the pigeons that are familiar with the landmarks. Then, the pigeons close to

their destination will fly to their destination quickly, which is represented by XC(t) (the center of some

pigeons positions at the tth iteration). The position updating rule for pigeon i at the tth iteration can be

given by:

Np(t) =
Np(t− 1)

2
(13)

XC(t) =

∑
Xi(t) · fitness(Xi(t))

Np

∑
fitness(Xi(t))

(14)

Xi(t) = Xi(t− 1) + rand · (XC(t)−Xi(t− 1)) (15)

where fitness(Xi(t)) is the quality of the pigeon i at the tth iteration. For the minimum optimization

problems, it is usually chosen as fitness(Xi(t)) =
1

fmin(Xi(t))+ξ . For the maximum optimization prob-

lems, it is usually chosen as fitness(Xi(t)) = fmax(Xi(t)) . For each individual pigeon, the optimal

position of the Ncth iteration can be denoted with Xp , and Xp = min(Xi(1), Xi(2), ..., Xi(Nc)) .

3.2 Encoding and decoding of the pigeon

In the Multi-Objective Pigeon Inspired Optimization (MOPIO), each pigeon contains information on the

job sequence (J), the corresponding machine sequence (M), machine maintenance (AM) and information

on the mould maintenance (OM). In the evolution process of MOPIO, the positions values of these

pigeons always fluctuate in the space of real number. Random key representation [23] and the smallest

position value (SPV) rule [24] are applied to decode the positions of pigeons into a suitable scheduling

solution for this problem. After decoding, the values of the J parameters are integers between 1 and P

( P is the number of jobs); the values of M parameters are integers between 1 and Q (Q is the number

of machines); The AM parameter is the maintenance decision on the machine, with value 0 or 1; The

OM parameter is the maintenance decision on the mould, with value 0 or 1; If the relevant AM or OM

is denoted as 1, the corresponding resource is maintained after finishing the job, otherwise they are not

maintained. An example pigeon before and after decoding is shown in Figure 1. In this example, there

are 4 jobs, 2 machines, and 2 moulds. Jobs 1, 2 can only be produced by mould 1 and Jobs 3, 4 can only

be produced by Mould 2. From Figure 1, it can be seen that the value of the job sequence (J) in the

original position of the pigeon is (1 0.3 0.8 1.2), and it is transferred into (2 3 1 4). The sequence (1 0.3

0.8 1.2) is ranked according to the ascending order and obtain (0.3 0.8 1 1.2). Since the number 0.3 is

in the second position of the original sequence, it is decoded into 2. Since the number 0.8 is in the third

position of the original sequence, it is decoded into 3. Using this method, the original positions can be

decoded into a suitable scheduling solution (2 3 1 4). The value of the corresponding machine sequence
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Figure 1 Encoding and decoding of the first example pigeon

Figure 2 Machine scheduling of the second example pigeon

(M) in the original position of the pigeon is (0.5 1.1 0.6 0.1). The interval [0.1 1.1] (0.1 is the minimum

and 1.1 is the maximum among all the numbers) is divided into 2 intervals, [0.1 0.6), [0.6 1.1] (there are

2 machines in this example). Since 0.5 and 0.1 are in the first interval, after decoding, the value in the

relevant position is 1. Since 0.6 and 1.1 are in the second interval after decoding, the value in the relevant

position is 2. So, the corresponding machine sequence (M) can be transferred into (1 2 2 1). The value

of the corresponding machine maintenance sequence (AM) in the original position of the pigeon is (0.6

0.2 1 0.5) and the interval [0.2 1] (0.2 is the minimum and 1 is the maximum among all the numbers)

is divided into 2 intervals, [0.2 0.6) and [0.6 1]. Since 0.2 and 0.5 are in the interval [0.2 0.6), the value

in the relevant position is decoded into 0. Since 0.6 and 1 are in the interval [0.6 1], the value in the

relevant position is decoded into 1. So, corresponding machine maintenance sequence (AM) is decoded

into (1 0 1 0). A similar decode method can be applied to mould maintenance (OM). After decoding, it

could be known that job 2 is distributed on machine 1 and machine 1 will be maintained after job 2, and

the injection mould on machine 1 will also be maintained. Job 3 is allocated to machine 2, but machine

2 will not be maintained since the corresponding AM parameter is 0 and the injection mould on machine

2 will not be maintained because the corresponding OM parameter is 0.

Furthermore, we give the fuzzy scheduling charts of another example pigeon (3 5 6 2 1 7 4 8 1 2 1 2 2

1 1 2 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0). The machine scheduling chart is shown in Figure 2 and the mould

scheduling chart is shown in Figure 3. In these figures, different jobs are represented by different colours.

The fuzzy number under the line is the start time of each job and the fuzzy number above the line is the

end time of each job. The maintenance on the machine and the mould is represented by the black. From

the Figure 2 and Figure 3, we can know that the fuzzy makespan is (28, 32, 33)

3.3 Multi-objective pigeon inspired optimization

Inspired by the multi-objective particle swarm optimizer using ring topology proposed by Yue, Qu, and

Liang (2017) [25], this paper proposes a multi-objective pigeon inspired optimization algorithm using ring

topology and a special non-dominated sorting method.

In the map and compass operation of MOPIO, we use the best pigeon in the neighborhood of each

pigeon instead of the global best pigeon to avoid that the population convergences to a single point. So
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Figure 3 Mould scheduling of the second example pigeon

the equation (11) is modified into equation (16).

Vi(t) = Vi(t− 1)e−Rt + rand(Xnbesti −Xi(t− 1)) (16)

where Xnbesti is the best pigeon in the neighborhood of the ith pigeon. Other symbols have the same

meanings as the symbols in equation (11). Two archives are established including the personal best

archive (PBA) and neighborhood best archive (NBA). The personal best pigeon and the neighborhood

best for each pigeon are chosen from the according PBA and NBA. For the neighborhood best archive

(NBA), NBA{i} denotes the best position within the ith particles neighborhood. Each neighborhood

includes three particles, the ith particle and its immediate neighbors on its right and left. Moreover,

an index-based ring topology is used to build the neighborhood and pigeons in different neighborhoods

cannot interact with each other directly. The use of the NBA promotes the formation of multiple niches by

restricting the information transmission through the population. Furthermore, a special sorting scheme

named non-dominated-scd-sort algorithm is used to rank the pigeons.

In the Landmark operator, the number of the pigeons is chosen as the numbers of pigeons in PBA,

the fitness is defined as fitness(Xi(t)) =
1

obj1min(Xi(t))+obj2min(Xi(t))+ξ . obj1min(Xi(t))+ obj2min(Xi(t))

is the sum of two objective values. The positions of all pi-geons are updated according to equation (13)

to equation (15). And pigeons are ranked based on the non-dominated-scd-sort algorithm. When all the

iterations end, best pigeons from the PBA are the final optimization solutions.

The non-dominated-scd-sort algorithm is proposed by Yue, Qu, and Liang (2017) [25]. There are

two steps in this algorithm. In the first step, the pigeons are sorted according to the non-dominated

sorting scheme [26]. In the second step, the special crowding distances of non-dominated pigeons are

calculated. The calculation of special crowding distance also contains two steps. In the first step, the

crowding distance, CD, for each pigeon in the decision space and the corresponding image in the objective

space are calculated. In the second step, the crowding distances from the first step are used to assign a

special crowding distance SCD for each pigeon. The SCD concept involves a max or min selection step

that involves crowding metrics from the decision and objective spaces. The diversity in the solution and

objective spaces are promoted simultaneously by this methodology. Finally, the non-dominated solutions

are ranked in descending order according to their special crowding distances. After sorting, the first

particle is the non-dominated solution with the largest special crowding distance.

The flowchart of the proposed MOPIO can be seen in Figure 4 and the details of each step are given

as follows:

Step 1. Input the parameters of the fuzzy production problem with mould maintenance, including the

numbers of jobs, machines, and moulds, the batch size of each job, the corresponding mould of each job,

the available machines for each job, the unit fuzzy operation time of each job.

Step 2. Initialize the parameters of MOPIO, including the dimension of the solution space, the size of

the population, NUM , map and compass factor R, the number of iteration Nc1max and the number of

iteration Nc2max for two operators.

Step 3. Each pigeon is randomly allocated a posiition and a velocity. Calculate the objective values

of all the pigeons. POPi(t) represents the pigeon i at the tth iteration. Initialize the number of elements

in the personal best archive (PBA ) and the neighborhood best archive (NBA ). PBA{i} saves the best
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Figure 4 Flowchart of the MOPIO

position for pigeon i . NBA{i} saves the best position in the neighborhood of the pigeon i. PBA{i} =

POPi(0),NBA{i} = PBA{i}
Step 4. Begin the map and compass operator. When the iteration t1 is smaller than the Nc1max ,

for all the NUM pigeons, sort the pigeons in PBA{i} and NBA{i} based on the non-dominated-scd-

sort algorithm. And select the first pigeon of the sorted NBA{i} as the nbesti . Update the POPi(t1)

according to Equation (16) and Equation (12). Calculate the objective values and the Special Crowding

Distance(SCD) of POPi(t1 + 1).

Step 5. Update PBA. For all the NUM pigeons, put POPi(t1 + 1) into PBA{i} and remove all the

pigeons dominated by POPi(t1 + 1).

Step 6. Update NBA. Using the index-based ring topology to decide the neighborhood of pigeon i ,

which includes three pigeon groups, the PBA{i} , PBA{i− 1} and PBA{i+ 1} . Particularly, if i = 1

, the neighborhood of the pigeon i is defined as PBA{NUM} , PBA{1} and PBA{2} ; if i = NUM

, the neighborhood is defined as PBA{NUM − 1}, PBA{NUM} and PBA{1}. Then obtain the non-

dominated pigeons based on non-dominated-scd-sort algorithm in the neighborhood and put them into

the NBA{i} .

Step 7. Set t1 = t1 + 1 . If the iteration t1 is smaller than Nc1max , return to step 4. If the iteration

t1 is bigger than Nc1max , go to step 8.

Step 8. Begin with landmark operator. When the iteration t2 is smaller than the Nc2max , conduct

the landmark operator. The size Np(1) is chosen as the number of pigeons in the archive PBA at the

last iteration of the map and compass operation. The size Np(t2) is chosen as the number of pigeons

in the archive PBA at iteration t2 .Then it is decreased by half in every iteration according to the

equation (13), which means that half of the pigeons will follow another half of the pigeons that are



Fu Xiaoyue, et al. Sci China Inf Sci 10

familiar with the landmark. The fitness is set as fitness(Xi(t)) =
1

obj1min(Xi(t))+obj2min(Xi(t))+ξ . where

obj1min(Xi(t)) + obj2min(Xi(t)) is the sum of two objective values. The center of the pigeons will be

calculated according to the equation (14). And the positions of the pigeons will update according to

equation (15).

Step 9. Update PBA. Calculate the objective values and the special crowding distance SCD of all the

pigeons POPi(t2 +1) . Put the new pigeons POPi(t2 +1) in the PBA and delete the pigeons dominated

by POPi(t2 + 1) based on the non-dominated -scd-sort algorithm.

Step 10. Set t2 = t2 +1 . If the iteration t2 is smaller than Nc2max , return to step 8. If the iteration

t2 is bigger than Nc2max , obtain the pigeons in PBA as the final optimization results.

4 Numerical experiments

The main objective of the numerical experiments is to test the optimization performance of the proposed

MOPIO algorithm. Since the problem is an extension of the problem proposed by Wong, Chan, and

Chung (2012) [3]. The benchmark datasets used in this paper are generated by randomly fuzzifying the

crisp benchmarks from Wong, Chan, and Chung (2012) [3]. To fuzzy a crisp benchmark dataset and

generate a triangular fuzzy processing time Pij = (P 1
ij , P

2
ij , P

3
ij) , according to Lei D. (2011) [27], the

most plausible value P 2
ij of the fuzzy processing time is equal to the value of the crisp processing time

Pij in the crisp datasets. The values of P 1
ij and P 2

ij were randomly generated from [0.85Pij , 0.95Pij ]

and [1.1Pij , 1.19Pij ] . The sizes of these three problems are (30 ∗ 3 ∗ 5), (40 ∗ 6 ∗ 10) and (60 ∗ 9 ∗ 15).

The quality of the solutions produced by the proposed MOPIO algorithm will be verified by comparing

the results obtained by adapted NSGA-II [26] and MOPSO [28] . Furthermore, three more randomly

generated datasets with size (20 ∗ 2 ∗ 4), (35 ∗ 4 ∗ 6) and (65 ∗ 8 ∗ 10) are used as benchmarks to further

illustrate the performance of the proposed MOPIO algorithm.

Numerical experiments are implemented in the Matlab environment on a personal computer with Intel

(R) Core (TM) i7-6700 CPU 3.40GHz CPU.

4.1 Performance indicator

To evaluate an algorithm, the quantitative analysis is as important as the qualitative analysis. Except

listing the non-dominated solutions found over a certain number of runs by different algorithms, this paper

uses two performance metrics to measure the performance of different algorithms: the Hypervolume (HV)

proposed by Ziter, Thiele, Laumanns , et al. (2003) [29] and the Cover Rate (CR) which is a modification

from the cover rate proposed by Yue, Qu, and Liang. (2017) [25] .

HV metric is used to measure the volume of hypercube enclosed by Pareto Front A and a reference

vector rref = (r1, r2, ...rn) with a larger value representing better performance, it is calculated as follows:

HV (A) =
∪
a∈A

vol(a) (17)

where vol(a) is the volume of hypercube enclosed by the solution a in the Pareto Front A and the

reference vector rref = (r1, r2, ...rn) . The bigger the value, the better the algorithm.

The CR represents the overlap ratio between different Pareto Fronts obtained by different algorithms.

The definition of the Cover Rate (CR(A,B)) is as follows:

CR(A,B) = (
n∏

l=1

δl)
1/2n (18)

δl =


1, Fmax

l = Fmin
l

0, fmin
l > Fmin

l ∥ fmax
l 6 Fmin

l

(
min(fmax

l ,Fmax
l )−max(fmin

l ,Fmin
l )

Fmax
l −Fmin

l

)2, otherwise

(19)
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Table 2 Different parameters combinations and its influence on results.

No Swarm size Max Iteration of each operation R Avg(HV ) Sd(HV )

1 20 100 0.01 184570 25677

2 20 200 0.2 183710 52467

3 20 400 0.4 224810 95112

4 50 100 0.2 244600 34749

5 50 200 0.4 240460 54875

6 50 400 0.01 304520 34394

7 80 100 0.4 237050 42451

8 80 200 0.01 264770 24049

9 80 400 0.2 262280 15366

where n is the dimensionality of the objective space; fmax
l and fmin

l are respectively the maximum

and minimum of the lth objective value obtained by algorithm A. Fmax
l and Fmin

l are the maximum and

minimum of the lth objective value obtained by algorithm B. If CR(A,B) is bigger than CR(B,A) , it

means that the scope of the Pareto Front obtained by algorithm A is larger than the scope of the Pareto

Front obtained by algorithm B, which means that algorithm A is better than algorithm B in terms of the

Cover Rate.

4.2 Parameter tunings

Since the parameters of the algorithm have a considerable influence on the results of the solution, we test

different combinations of parameters on the medium size dataset (40∗6∗10) to decide the final parameters

used for this algorithm. There are three main parameters in the proposed MOPIO, population size, the

iteration (the iteration of each operation is half of the overall iteration) and the map and compass factor

R . The map and compass factor R decides the influence of the previous velocity on the present velocity.

The smaller the value is, the bigger the influence is. We choose the parameter combinations from the

sets: Swarm size= {20, 50, 80}, Iteration ={100, 200, 400}. R= {0.01, 0.2, 0.4}. Taguchi method is

used to reduce the number of experiments. Each parameter combination run ten times. The orthogonal

arrays based on Taguchi methods and the average values and the standard deviation of the HV for each

parameter combination are shown in Table 2. From the table 2, we can know that the larger the iteration

is, the better the result is, while the larger swarm size does not mean the better the results. The smaller

the R is, the better the result is. Finally, the parameter combination {swarm size=50, iteration=400 and

R=0.01} is chosen as the parameter used for the following tests.

4.3 Comparison with other multi-objective algorithms

To test the performance of the proposed MOPIO, this research compares it with other two well-known

multi-objective algorithms: adapted NSGA-II [26] and MOPSO [28] . For unbiased comparison, the

swarm size is set as 50, the iteration is set as 400 for these three algorithms. The parameters related to

the MOPSO and NSGA-II are the same as the parameters in the original literature. The R is set as 0.01

for MOPIO. The reference vector for the calculation of HV is set as (5200, 400). Each algorithm runs ten

times. For the fuzzed benchmark datasets, the Pareto Fronts of three algorithms are shown in Figure 5-

Figure 7. The comparison results of the performance indicators (the Hypervolume (HV) and the Cover

Rate (CR)) are shown in Table 3 and Table 4. Avg(HV ) is the average value of the HV for the 10 runs.

SD(HV ) is the standard deviation of the HV for the 10 runs. Avg(CR) is the average value of the CR

for the 10 runs. SD(CR) is the standard deviation of the CR for the 10 runs.

Furthermore, three more instances are produced randomly to better illustrate the performance of the

propose MOPIO algorithm. The size of these three problems are (20 ∗ 2 ∗ 4), (35 ∗ 4 ∗ 6) and (65 ∗ 8 ∗ 10).
The most plausible value P 2

ij of the fuzzy processing time is produced randomly between 30 and 55 units

of time. The values of P 1
ij and P 3

ij were randomly generated from [0.85P 2
ij , 0.95P

2
ij ] and [1.1P 2

ij , 1.19P
2
ij ].

The batch size of the jobs is produced randomly between 2 and 6 units. The comparison results of the

performance indicators are shown in Table 5 and Table 6.



Fu Xiaoyue, et al. Sci China Inf Sci 12

3000 3500 4000 4500 5000 5500
150

200

250

300

350

400
Results of different algorithms

 

 
MOPSO
NSGA2
MOPIO

Figure 5 Pareto fronts of the fuzzed benchmark (30 ∗ 3 ∗ 5)
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Figure 6 Pareto fronts of the fuzzed benchmark (40 ∗ 6 ∗ 10)

Table 3 HV Comparison results of the fuzzed benchmarks.

MOPIO NSGA− II MOPSO

30 ∗ 3 ∗ 5 Avg(HV ) 410140 369320 394800

Sd(HV ) 35771 38432 34513

40 ∗ 6 ∗ 10 Avg(HV ) 296680 227000 340670

Sd(HV ) 33643 36029 42257

60 ∗ 9 ∗ 15 Avg(HV ) 260000 198240 225760

Sd(HV ) 66773 60707 45271

From the Figure 5, it can be known that the Pareto Front of the dataset (30∗3∗5) by MOPIO is in the

left bottom of the coordinate system compared with the Pareto Fronts by MOPSO and NSGA-II. From the

Table 3, we can see that for the dataset (30∗3∗5), the value of Avg(HV ) for the Pareto Front by MOPIO



Fu Xiaoyue, et al. Sci China Inf Sci 13

3000 3500 4000 4500 5000 5500
150

200

250

300

350

400

450

500
Results of different algorithms

 

 
MOPSO
NSGA2
MOPIO

Figure 7 Pareto fronts of the fuzzed benchmark (60 ∗ 9 ∗ 15)

Table 4 CR Comparison results of the fuzzed benchmarks.

MOPIO vs NSGA-II NSGA-II vs MOPIO MOPIO vs MOPSO MOPSO vs MOPIO

30 ∗ 3 ∗ 5 Avg(CR) 0.7019 0.3904 0.7762 0.6362

Sd(CR) 0.3260 0.2850 0.3016 0.2784

40 ∗ 6 ∗ 10 Avg(CR) 0.5584 0.4338 0.5456 0.5219

Sd(CR) 0.2912 0.2627 0.2530 0.3083

60 ∗ 9 ∗ 15 Avg(CR) 0.5519 0.4986 0.71 0.5342

Sd(CR) 0.334 0.3163 0.2967 0.34

Table 5 HV Comparison results of the random benchmarks.

MOPIO NSGA− II MOPSO

20 ∗ 2 ∗ 4 Avg(HV ) 370120 259960 420310

Sd(HV ) 42687 52709 44402

35 ∗ 4 ∗ 6 Avg(HV ) 257290 115370 117340

Sd(HV ) 15086 26714 23554

65 ∗ 8 ∗ 10 Avg(HV ) 357070 210300 337900

Sd(HV ) 24190 38107 36947

Table 6 CR Comparison results of the random benchmarks.

MOPIO vs NSGA-II NSGA-II vs MOPIO MOPIO vs MOPSO MOPSO vs MOPIO

20 ∗ 2 ∗ 4 Avg(CR) 0.6842 0.4734 0.7957 0.7018

Sd(CR) 0.3189 0.2486 0.1846 0.2225

35 ∗ 4 ∗ 6 Avg(CR) 0.8664 0.2704 0.5145 0.5269

Sd(CR) 0.1158 0.2374 0.4783 0.4566

65 ∗ 8 ∗ 10 Avg(CR) 0.7290 0.3524 0.5578 0.5319

Sd(CR) 0.3821 0.3453 0.3433 0.3339

is bigger than the values of Avg(HV ) for the Pareto Fronts by MOPSO and NSGA-II. Furthermore, the

boundary of the Pareto Front by MOPIO is larger than the Pareto Fronts by MOPSO and NSGA-II. From

the Table 4, we can see that the value of the Avg(CR(MOPIO,NSGA− II)) is bigger than the value of

the Avg(CR(NSGA− II,MOPIO)) and the value of the Avg(CR(MOPIO,MOPSO)) is bigger than

the value of the Avg(CR(MOPSO,MOPIO)). So we can conclude that for the dataset (30 ∗ 3 ∗ 5), the
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quality of the Pareto Front by MOPIO is better than the Pareto Fronts by MOPSO and NSGA-II. For

the dataset (60 ∗ 9 ∗ 15), by comparing the location of Pareto Fronts in the Figure 7 and the values for

dataset (60 ∗ 9 ∗ 15) in Table 3 and Table 4, we can also conclude that for the dataset (60 ∗ 9 ∗ 15), the
quality of the Pareto Front by MOPIO is better than the Pareto Fronts by MOPSO and NSGA-II based

on the two performance indicators.

From the Figure 6, we can see that although the Pareto Front by MOPSO is in the left bottom of

the coordinate system compared with the Pareto Fronts by MOPIO and NSGA-II, the boundary of the

Pareto Front by MOPIO is larger than the Pareto Fronts by MOPSO and NSGA-II. Turning back to the

values in Table 3 and Table 4, we can see that for the dataset (40*6*10), the value of Avg(HV ) of the

Pareto Front by MOPSO is bigger than the values of Pareto Fronts by MOPIO and NSGA-II. But the

value of the Avg(CR(MOPIO,MOPSO)) is bigger than the value of the Avg(CR(MOPSO,MOPIO))

and the value of the Avg(CR(MOPIO,NSGA− II)) is bigger than the value of the Avg(CR(NSGA−
II,MOPIO)).

From Table 5 and Table 6, it can be known that the value of the Avg(HV ) for MOPIO is better than the

values of Avg(HV ) for MOPSO and NSGA-II for the bigger datasets which are randomly generated. But

for the small dataset, the value of the Avg(HV ) for MOPSO is better than the value of the Avg(HV ) for

MOPIO and NSGA-II. For these three datasets, the value of the Avg(CR(MOPIO,MOPSO)) is bigger

than the value of the Avg(CR(MOPSO,MOPIO)) and the value of the Avg(CR(MOPIO,NSGA−II))

is bigger than the value of the Avg(CR(NSGA− II,MOPIO)).

After analyzing the Pareto Fronts of different algorithms in different aspects, we can conclude that the

Pareto Fronts obtained by MOPIO always have a better Cover Rate (CR) compared with MOPSO and

NSGA-II. For most of the datasets, the Hypervolume (HV) of the solutions obtained by MOPIO is better

than MOPSO and NSGA-II. That is because that the mechanism of the index-based ring topology used

in the MOPIO improves the diversity of the solutions and the non-dominated scd sort algorithm applied

in the MOPIO to sort the pigeons helps to choose the pigeons with better performance and distribution

in every iteration.

5 Conclusions

In this research, the Fuzzy Production Scheduling Problem considering Mould Maintenance (FPSM-MM)

is studied. The processing time and the maintenance time are represented by triangular fuzzy numbers.

Two objectives are optimized including the fuzzy makespan and the robustness. A Multi-Objective Pigeon

Inspired Optimization (MOPIO) algorithm is proposed to solve this multi-objective fuzzy problem. To

extend the basic Pigeon Inspired Optimization (PIO) algorithm from the single-objective case to the

multi-objective case, a special non-dominated sorting method is used to obtain solutions that used as

candidates for the leader pigeon and a good distribution of solutions in the objective space and in the

corresponding decision space is guaranteed. Moreover, we make each pigeon exchange information with

its closed neighbors instead of the global best pigeon with the help of index-based ring topology. The

diversity of the population is improved by forming more niches. Furthermore, a series of experiments

on the fuzzified benchmarks from existing literature and some randomly generated instances show the

efficiency and effectiveness of the proposed Multi-Objective Pigeon Inspired Optimization (MOPIO)

algorithm by comparing it with two well-known multi-objective algorithms.

In this research, all the jobs are well prepared at the beginning time. However, in the real cases,

some new jobs may come during the production process. When the new coming tasks are considered,

the original schedule needs to be adjusted to obtain better solutions. In the future, a new algorithm

based on Pigeon Inspired Optimization (PIO) will be proposed to solve this problem. Furthermore,

more mechanisms will be proposed to improve the effectiveness of the proposed Multi-Objective Pigeon

Inspired Optimization (MOPIO) algorithm

Acknowledgements The work described in this paper was supported by grants from the Research Grants

Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 15201414); The Natural



Fu Xiaoyue, et al. Sci China Inf Sci 15

Science Foundation of China (Grant No. 71471158, 71571120, 71271140); a grant from the Research Committee

of The Hong Kong Polytechnic University under student ac-count code RUKH; Project Supported by Guangdong

Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme 2016.

References

1 Rajkumar, M., Asokan, P.,Vamsikrishna, V. A GRASP algorithm for flexible job-shop scheduling with maintenance

constraints. International Journal of Production Research, 2010, 48(22): 6821-6836.

2 Berrichi, A., Yalaoui, F., Amodeo, L., et al. Bi-Objective Ant Colony Optimi-zation approach to optimize production

and maintenance scheduling. Computers and Operations Research, 2010, 37(9): 1584-1596.

3 Wong, C. S., Chan, F. T. S.,Chung, S. H. A genetic algorithm approach for production scheduling with mould main-

tenance consideration. International Journal of Production Re-search, 2012, 50(20): 5683-5697.

4 Wong, C. S., Chan, F. T. S., Chung, S. H. A joint production scheduling approach con-sidering multiple resources and

preventive maintenance tasks. International Journal of Pro-duction Research, 2013, 51(3): 883-896.

5 Wong, C. S., Chan, F. T. S.,Chung, S. H. Decision-making on multi-mould mainte-nance in production scheduling.

International Journal of Production Research, 2014, 52(19): 5640-5655.

6 Wang, S. J., Liu, M. Multi-objective optimization of parallel machine schedul-ing integrated with multi-resources

preventive maintenance planning. Journal of Manufac-turing Systems, 2015, 37: 182-192.

7 Shen, L., Yang, H. B., Gao, S.,et al. Production Scheduling with Mould Mainte-nance in Flow Shop. In P. Yarlagadda

(Ed.), Proceedings of the 2016 4th International Con-ference on Sensors, Mechatronics and Automation. Zhuhai,

China.

8 Sakawa M, Mori T. An efficient genetic algorithm for job shop scheduling problems with fuzzy processing time and

fuzzy due date. Computers and industrial engineering 1999, 36: 325-341.

9 Arik, O. A.,Toksari, M. D. Multi-objective fuzzy parallel machine scheduling problems under fuzzy job deterioration

and learning effects. International Journal of Production Re-search, 2018, 56(7): 2488-2505.

10 Jamrus, T., Chien, C. F., Gen, M., et al. Hybrid Particle Swarm Optimization Combined With Genetic Operators for

Flexible Job-Shop Scheduling Under Uncertain Pro-cessing Time for Semiconductor Manufacturing. IEEE Transactions

on Semiconductor Man-ufacturing, 2018, 31(1): 32-41.

11 Palacios, J. J., Gonzlez-Rodrguez, I., Vela, C. R.,et al. Robust multiobjective optimisation for fuzzy job shop problems.

Applied Soft Computing, 2017, 56: 604-616.

12 Xiong, J., Xing, L. N., Chen, Y. W. Robust scheduling for multi-objective flexible job-shop problems with random

machine breakdowns. International Journal of Production Economics, 2013, 141(1): 112-126.

13 Duan, H., Qiao, P. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning.

International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37.

14 Li, C., Duan, H. Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential

function. Aerospace Science and Technology, 2014, 39: 352-360.

15 Zhang, B.,Duan, H. Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey

pigeon-inspired optimization in dynamic environment. IEEE/ACM Transactions on Computational Biology and Bioin-

formatics (TCBB), 2017, 14(1): 97-107.

16 Duan, H.,Wang, X. Echo State Networks With Orthogonal Pigeon-Inspired Optimi-zation for Image Restoration. IEEE

Transactions on Neural Networks and Learning Systems, 2016, 27(11): 2413-2425.

17 Deng, Y., Duan, H. Control parameter design for automatic carrier landing system via pigeon-inspired optimization.

Nonlinear Dynamics, 2016, 85(1): 97-106.

18 Zhang, S., Duan, H. Gaussian pigeon-inspired optimization approach to orbital space-craft formation reconfiguration.

Chinese Journal of Aeronautics, 2015, 28(1): 200-205.

19 Qiu, H., Duan, H. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design.

Science China Technological Sciences, 2015, 58(11): 1915-1923.

20 Qiu, H., Duan, H. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obsta-

cles. Information Sciences. 2018.

21 Fortemps, P. Job shop scheduling with imprecise durations: a fuzzy approach. IEEE Transactions on Fuzzy Systems,

1997, 5(4): 557-569.

22 Palacios, J. J., Gonzlez-Rodrguez, I., Vela, C. R., et al. Robust multiobjective optimisation for fuzzy job shop problems.

Applied Soft Computing, 2017,56: 604-616.

23 Bean, J. C. Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA Journal on Computing,

1994, 6(2): 154-160.

24 Tasgetiren, M. F., Liang, Y.C., Sevkli, M., et al. A particle swarm opti-mization algorithm for makespan and total

flowtime minimization in the permutation flowshop sequencing problem. European Journal of Operational Research,

2007, 177(3): 1930-1947.

25 Yue, C., Qu, B.,Liang, J. A multi-objective particle swarm optimizer using ring to-pology for solving multimodal multi-

objective problems. IEEE Transactions on Evolutionary Computation. 2017, DOI: 10.1109/TEVC.2017.2754271

26 Deb, K., Pratap, A., Agarwal, S., et al. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE transac-

tions on evolutionary computation, 2002, 6(2): 182-197.

27 Lei, D. Scheduling fuzzy job shop with preventive maintenance through swarm-based neighborhood search. The



Fu Xiaoyue, et al. Sci China Inf Sci 16

International Journal of Advanced Manufacturing Technology, 2011, 54(9-12): 1121-1128.

28 Coello, C. A. C., Pulido, G. T., Lechuga, M. S. Handling multiple objectives with par-ticle swarm optimization. IEEE

Transactions on evolutionary computation, 2004, 8(3): 256-279.

29 Zitzler, E., Thiele, L., Laumanns, M., et al. Performance assessment of multiobjective optimizers: An analysis and

review. IEEE Transactions on evolutionary computation, 2003, 7(2): 117-132.




