Skip to main content
Log in

Total ionizing dose effects on graphene-based charge-trapping memory

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This study investigates the total ionizing dose effects in graphene-based charge-trapping memory (GCTM) capacitors by using 60Co γ-irradiation. Electrical properties including CV hysteresis window, gate leakage current, and flat band voltage shifts are evaluated with ionizing dose levels up to 1 Mrad (Si). The CV hysteresis memory window is hardly affected by the irradiation. The gate leakage current increases with the increase of ionizing dose due to the multiple-trap assisted tunneling mechanism. Significant electrical degrade of the devices in programmed and erased states has been observed with the increase of the dose levels. Mechanisms behind the degradation are attributed to the photo-emission in the graphene nanodisc charge-trapping sets, radiation-induced holes trapping in the peripheral oxides, and the recombination of the stored electrons with the radiation-induced holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerardin S, Bagatin M, Paccagnella A, et al. Radiation effects in flash memories. IEEE Trans Nucl Sci, 2013, 60: 1953–1969

    Article  Google Scholar 

  2. Petrov A, Vasil’ev A, Ulanova A, et al. Flash memory cells data loss caused by total ionizing dose and heavy ions. Open Phys, 2014, 12: 725–729

    Article  Google Scholar 

  3. Gerardin S, Paccagnella A. Present and future non-volatile memories for space. IEEE Trans Nucl Sci, 2010, 57: 3016–3039

    Google Scholar 

  4. Liu M H, Lu W, Ma W Y, et al. Total ionizing dose effects of domestic SiGe HBTs under different dose rates. Chin Phys C, 2016, 40: 036003

    Article  Google Scholar 

  5. Bi J S, Xu Y N, Xu G B, et al. Total ionization dose effects on charge-trapping memory with Al2O3/HfO2/Al2O trilayer structure. IEEE Trans Nucl Sci, 2018, 65: 200–205

    Article  Google Scholar 

  6. Xi K, Bi J S, Hu Y, et al. Impact of γ-ray irradiation on graphene nano-disc non-volatile memory. Appl Phys Lett, 2018, 113: 164103

    Article  Google Scholar 

  7. Xu Y N, Bi J S, Xu G B, et al. Total ionizing dose effects and annealing behaviors of HfO2-based MOS capacitor. Sci China Inf Sci, 2017, 60: 120401

    Article  Google Scholar 

  8. Bi J S, Han Z S, Zhang E X, et al. The impact of X-ray and proton irradiation on HfO2/Hf-based bipolar resistive memories. IEEE Trans Nucl Sci, 2013, 60: 4540–4546

    Article  Google Scholar 

  9. Bi J S, Zeng C B, Gao L C, et al. Estimation of pulsed laser-induced single event transient in a partially depleted silicon-on-insulator 0.18-µm MOSFET. Chin Phys B, 2014, 23: 088505

    Article  Google Scholar 

  10. Li X J, Yang J Q, Fleetwood D M, et al. Hydrogen soaking, displacement damage effects, and charge yield in gated lateral bipolar junction transistors. IEEE Trans Nucl Sci, 2018, 65: 1271–1276

    Article  Google Scholar 

  11. Wang Z J, Xue Y Y, Chen W, et al. Fixed pattern noise and temporal noise degradation induced by radiation effects in pinned photodiode CMOS image sensors. IEEE Trans Nucl Sci, 2018, 65: 1264–1270

    Article  Google Scholar 

  12. Oldham T R, Ladbury R L, Friendlich M, et al. SEE and TID characterization of an advanced commercial 2 Gbit NAND flash nonvolatile memory. IEEE Trans Nucl Sci, 2006, 53: 3217–3222

    Article  Google Scholar 

  13. Schmidt H, Grurmann K, Nickson B, et al. TID test of an 8-Gbit NAND flash memory. IEEE Trans Nucl Sci, 2009, 56: 1937–1940

    Article  Google Scholar 

  14. Nguyen D N, Guertin S M, Swift G M, et al. Radiation effects on advanced flash memories. IEEE Trans Nucl Sci, 1999, 46: 1744–1750

    Article  Google Scholar 

  15. Clark L T, Holbert K E, Adams J W, et al. Evaluation of 1.5-T cell flash memory total ionizing dose response. IEEE Trans Nucl Sci, 2015, 62: 2431–2439

    Article  Google Scholar 

  16. Fazio A. Flash memory scaling. MRS Bull, 2004, 29: 814–817

    Article  Google Scholar 

  17. Banszerus L, Schmitz M, Engels S, et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci Adv, 2015, 1: 1500222

    Article  Google Scholar 

  18. Zhai P F, Liu J, Zeng J, et al. Evidence for re-crystallization process in the irradiated graphite with heavy ions obtained by Raman spectroscopy. Carbon, 2016, 101: 22–27

    Article  Google Scholar 

  19. Ribeiro-Palau R, Lafont F, Brun-Picard J, et al. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions. Nat Nanotech, 2015, 10: 965–971

    Article  Google Scholar 

  20. Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotech, 2008, 3: 206–209

    Article  Google Scholar 

  21. Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature, 2006, 444: 347–349

    Article  Google Scholar 

  22. Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers. Nano Lett, 2012, 12: 844–849

    Article  Google Scholar 

  23. Lee M W, Kim H Y, Yoon H, et al. Fabrication of dispersible graphene flakes using thermal plasma jet and their thin films for solar cells. Carbon, 2016, 106: 48–55

    Article  Google Scholar 

  24. Joo S S, Kim J, Kang S S, et al. Graphene-quantum-dot nonvolatile charge-trap flash memories. Nanotechnology, 2014, 25: 255203

    Article  Google Scholar 

  25. Wang S, Pu J, Chan D S H, et al. Wide memory window in graphene oxide charge storage nodes. Appl Phys Lett, 2010, 96: 143109

    Article  Google Scholar 

  26. Yang R, Zhu C X, Meng J L, et al. Isolated nanographene crystals for nano-floating gate in charge trapping memory. Sci Rep, 2013, 3: 2126

    Article  Google Scholar 

  27. Wang J C, Chang K P, Lin C T, et al. Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications. Carbon, 2017, 113: 318–324

    Article  Google Scholar 

  28. Specht M, Reisinger H, Hofmann F, et al. Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications. Solid-State Electron, 2005, 49: 716–720

    Article  Google Scholar 

  29. Kaniyankandy S, Achary S N, Rawalekar S, et al. Ultrafast relaxation dynamics in graphene oxide: evidence of electron trapping. J Phys Chem C, 2011, 115: 19110–19116

    Article  Google Scholar 

  30. Oldham T R, McLean F B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans Nucl Sci, 2003, 50: 483–499

    Article  Google Scholar 

  31. Hughes R C. Charge-carrier transport phenomena in amorphous SiO2: direct measurement of the drift mobility and lifetime. Phys Rev Lett, 1973, 30: 1333–1336

    Article  Google Scholar 

  32. Lenahan R M, Campbell J P, Kang A Y, et al. Radiation-induced leakage currents: atomic scale mechanisms. IEEE Trans Nucl Sci, 2001, 48: 2101–2106

    Article  Google Scholar 

  33. Ceschia M, Paccagnella A, Cester A, et al. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides. IEEE Trans Nucl Sci, 1998, 45: 2375–2382

    Article  Google Scholar 

  34. Bi J S, Xi K, Li B, et al. Heavy ion induced upset errors in 90-nm 64 Mb NOR-type floating-gate flash memory. Chin Phys B, 2018, 27: 098501

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61704188, 616340084), Youth Innovation Promotion Association CAS (Grant No. 2014101), and International Cooperation Project of CAS, Austrian-Chinese Cooperative R&D Projects (Grant No. 172511KYSB20150006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshun Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, K., Bi, J., Majumdar, S. et al. Total ionizing dose effects on graphene-based charge-trapping memory. Sci. China Inf. Sci. 62, 222401 (2019). https://doi.org/10.1007/s11432-018-9799-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-018-9799-1

Keywords

Navigation