Skip to main content
Log in

Learning impedance control of robots with enhanced transient and steady-state control performances

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This study proposes a learning impedance controller comprising a proportional feedback control term, a composite-learning-based uncertainty estimation term, and a robot-environment interaction control term. The impedance control problem is converted into a particular reference-trajectory tracking problem based on a generated reference trajectory. The proposed controller ensures the exponential convergence of the auxiliary tracking error and the uncertainty estimation error. The interaction control term improves the transient control performance through suppression/encouragement of the incorrect/correct robot movements. The composite-learning update law enhances the transient and steady-state control performances based on the exponential convergence of the uncertainty estimation error and auxiliary tracking error. Finally, the effectiveness and advantages of the proposed impedance controller are validated by theoretical analysis and simulations on a parallel robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu J P, Zhao L, Yu H S, et al. Barrier Lyapunov functions-based command filtered output feedback control for full-state constrained nonlinear systems. Automatica, 2019, 105: 71–79

    Article  MathSciNet  Google Scholar 

  2. Abdelatti M, Yuan C Z, Zeng W, et al. Cooperative deterministic learning control for a group of homogeneous nonlinear uncertain robot manipulators. Sci China Inf Sci, 2018, 61: 112201

    Article  MathSciNet  Google Scholar 

  3. He W, Yin Z, Sun C Y. Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function. IEEE Trans Cybern, 2017, 47: 1641–1651

    Article  Google Scholar 

  4. Yu J P, Shi P, Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica, 2018, 92: 173–180

    Article  MathSciNet  Google Scholar 

  5. Hogan N. Impedance control: an approach to manipulation: Part I-theory. J Dynamic Syst Measurement Control, 1985, 107: 1–7

    Article  Google Scholar 

  6. Cui J, Lai M, Chu Z Y, et al. Experiment on impedance adaptation of under-actuated gripper using tactile array under unknown environment. Sci China Inf Sci, 2018, 61: 122202

    Article  Google Scholar 

  7. Chu Z Y, Yan S B, Hu J, et al. Impedance identification using tactile sensing and its adaptation for an underactuated gripper manipulation. Int J Control Autom Syst, 2018, 16: 875–886

    Article  Google Scholar 

  8. Sun T R, Peng L, Cheng L, et al. Stability-guaranteed variable impedance control of robots based on approximate dynamic inversion. IEEE Trans Syst Man Cybern Syst, 2019. doi: https://doi.org/10.1109/TSMC.2019.2930582

  9. Zhang F, Hou Z G, Cheng L, et al. iLeg—a lower limb rehabilitation robot: a proof of concept. IEEE Trans Human-Mach Syst, 2016, 46: 761–768

    Article  Google Scholar 

  10. Saglia J A, Tsagarakis N G, Dai J S, et al. Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT). IEEE/ASME Trans Mechatron, 2013, 18: 1799–1808

    Article  Google Scholar 

  11. Li Z J, Zhao S, Duan J, et al. Human cooperative wheelchair with brain-machine interaction based on shared control strategy. IEEE/ASME Trans Mechatron, 2017, 22: 185–195

    Article  Google Scholar 

  12. Wojtara T, Uchihara M, Murayama H, et al. Human-robot collaboration in precise positioning of a three-dimensional object. Automatica, 2009, 45: 333–342

    Article  MathSciNet  Google Scholar 

  13. Vukobratovic M, Surdilovic, Ekalo Y, et al. Dynamics and Robust Control of Robot-Environment Interaction. Singapore: World Scientific, 2009

    Book  Google Scholar 

  14. Jung S, Hsia T C. Neural network impedance force control of robot manipulator. IEEE Trans Ind Electron, 1998, 45: 451–461

    Article  Google Scholar 

  15. Jamwal P K, Hussain S, Ghayesh M H, et al. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE Trans Ind Electron, 2016, 63: 3638–3647

    Article  Google Scholar 

  16. He W, Dong Y, Sun C Y. Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybern Syst, 2016, 46: 334–344

    Article  Google Scholar 

  17. Sharifi M, Behzadipour S, Salarieh H, et al. Cooperative modalities in robotic tele-rehabilitation using nonlinear bilateral impedance control. Control Eng Practice, 2017, 67: 52–63

    Article  Google Scholar 

  18. Sharifi M, Behzadipour S, Vossoughi G. Nonlinear model reference adaptive impedance control for human-robot interactions. Control Eng Practice, 2014, 32: 9–27

    Article  Google Scholar 

  19. Chan S P, Yao B, Gao W B, et al. Robust impedance control of robot manipulators. Int J Robot Autom, 1991, 6: 220–227

    Google Scholar 

  20. Mohammadi H, Richter H. Robust tracking/impedance control: application to prosthetics. In: Proceedings of American Control Conference, 2015. 2673–2678

  21. Cheah C C, Wang D W. Learning impedance control for robotic manipulators. IEEE Trans Robot Automat, 1998, 14: 452–465

    Article  Google Scholar 

  22. Li X, Liu Y H, Yu H Y. Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica, 2018, 90: 1–7

    Article  MathSciNet  Google Scholar 

  23. Liang X Q, Zhao H, Li X F, et al. Force tracking impedance control with unknown environment via an iterative learning algorithm. Sci China Inf Sci, 2019, 62: 050215

    Article  Google Scholar 

  24. Li Y N, Ge S S. Human-robot collaboration based on motion intention estimation. IEEE/ASME Trans Mechatron, 2014, 19: 1007–1014

    Article  Google Scholar 

  25. Li Z J, Huang Z C, He W, et al. Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans Ind Electron, 2017, 64: 1664–1674

    Article  Google Scholar 

  26. Sun T, Peng L, Cheng L, et al. Composite learning enhanced robot impedance control. IEEE Trans Neural Netw Learn Syst, 2020, 31: 1052–1059

    Article  Google Scholar 

  27. He W, Dong Y. Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans Neural Netw Learn Syst, 2018, 29: 1174–1186

    Article  Google Scholar 

  28. Li X, Pan Y P, Chen G, et al. Multi-modal control scheme for rehabilitation robotic exoskeletons. Int J Robot Res, 2017, 36: 759–777

    Article  Google Scholar 

  29. Pan Y P, Yu H Y. Composite learning from adaptive dynamic surface control. IEEE Trans Automat Contr, 2016, 61: 2603–2609

    Article  MathSciNet  Google Scholar 

  30. Pan Y P, Yu H Y. Composite learning robot control with guaranteed parameter convergence. Automatica, 2018, 89: 398–406

    Article  MathSciNet  Google Scholar 

  31. Wang C, Peng L, Luo L C, et al. Genetic algorithm based dynamics modeling and control of a parallel rehabilitation robot. In: Proceedings of 2018 IEEE Congress on Evolutionary Computation, 2018. 1–7

  32. Spong M W, Vidyasagar M. Robot Dynamics and Control. New York: John Wiley & Sons, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengguang Hou.

Additional information

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61720106012, 61873268, 61633016), Beijing Natural Science Foundation (Grant No. L182060), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB32040000), and China Postdoctoral Science Foundation (Grant No. 2019T120405).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Cheng, L., Peng, L. et al. Learning impedance control of robots with enhanced transient and steady-state control performances. Sci. China Inf. Sci. 63, 192205 (2020). https://doi.org/10.1007/s11432-019-2639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2639-6

Keywords

Navigation