Skip to main content
Log in

Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Two-dimensional layered materials (2DLMs) have triggered a broad research thrust over the last decade worldwide. Different from the gapless graphene, transition metal dichalcogenides (TMDs) exhibit versatile bandstructure, with bandgap sizes ranging from semi-metallic to over 2 eV. Therefore, 2D-TMDs can be utilized in various applications from logic to optoelectronic devices. In this review we first introduce the latest developments of the wafer-scale synthesis of continuous TMD films, then we present recent advances in large scale devices and circuits based on TMD films, including logic, memory, optoelectronic and analog devices. We also provide a perspective and a look at the future device applications based on wafer-scale 2D-TMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042

    Article  Google Scholar 

  2. Chhowalla M, Liu Z F, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev, 2015, 44: 2584–2586

    Article  Google Scholar 

  3. Wang F K, Zhang Y, Gao Y, et al. 2D metal chalcogenides for IR photodetection. Small, 2019, 15: 1901347

    Article  Google Scholar 

  4. Cai Z Y, Liu B, Zou X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133

    Article  Google Scholar 

  5. Xie C, Mak C, Tao X M, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater, 2017, 27: 1603886

    Article  Google Scholar 

  6. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6: 147–150

    Article  Google Scholar 

  7. Butler S Z, Hollen S M, Cao L Y, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898–2926

    Article  Google Scholar 

  8. Yu L L, El-Damak D, Radhakrishna U, et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett, 2016, 16: 6349–6356

    Article  Google Scholar 

  9. Wachter S, Polyushkin D K, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8: 14948

    Article  Google Scholar 

  10. Liu C S, Yan X, Song X F, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol, 2018, 13: 404–410

    Article  Google Scholar 

  11. Liu C S, Chen H W, Hou X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat Nanotechnol, 2019, 14: 662–667

    Article  Google Scholar 

  12. Lan Y W, Chen P C, Lin Y Y, et al. Scalable fabrication of a complementary logic inverter based on MoS2 fin-shaped field effect transistors. Nanoscale Horiz, 2019, 4: 683–688

    Article  Google Scholar 

  13. Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275

    Article  Google Scholar 

  14. Shivayogimath A, Thomsen J D, Mackenzie D M A, et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat Commun, 2019, 10: 2957

    Article  Google Scholar 

  15. Wang Y L, Li L F, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett, 2015, 15: 4013–4018

    Article  Google Scholar 

  16. He Q Y, Li P J, Wu Z H, et al. Molecular beam epitaxy scalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics. Adv Mater, 2019, 349: 1901578

    Article  Google Scholar 

  17. Ciarrocchi A, Avsar A, Ovchinnikov D, et al. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat Commun, 2018, 9: 919

    Article  Google Scholar 

  18. Baugher B W H, Churchill H O H, Yang Y, et al. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett, 2013, 13: 4212–4216

    Article  Google Scholar 

  19. Li H, Wu J, Yin Z Y, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47: 1067–1075

    Article  Google Scholar 

  20. Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805

    Article  Google Scholar 

  21. Zhang Y, Ye J, Matsuhashi Y, et al. Ambipolar MoS2 thin flake transistors. Nano Lett, 2012, 12: 1136–1140

    Article  Google Scholar 

  22. Martin S J, Walker A B, Campbell A J, et al. Electrical transport characteristics of single-layer organic devices from theory and experiment. J Appl Phys, 2005, 98: 063709

    Article  Google Scholar 

  23. Qian X F, Liu J W, Fu L, et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014, 346: 1344–1347

    Article  Google Scholar 

  24. Li D, Chen M Y, Sun Z Z, et al. Two-dimensional non-volatile programmable p-n junctions. Nat Nanotechnol, 2017, 12: 901–906

    Article  Google Scholar 

  25. Gao Y, Liu Z B, Sun D M, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun, 2015, 6: 8569

    Article  Google Scholar 

  26. Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24: 2320–2325

    Article  Google Scholar 

  27. Xu H, Zhang H M, Guo Z X, et al. High-performance wafer-scale MoS2 transistors toward practical application. Small, 2018, 14: 1803465

    Article  Google Scholar 

  28. Xu H, Zhang H M, Liu Y W, et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv Funct Mater, 2019, 29: 1805614

    Article  Google Scholar 

  29. Fu D Y, Zhao X X, Zhang Y Y, et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J Am Chem Soc, 2017, 139: 9392–9400

    Article  Google Scholar 

  30. Poh S M, Zhao X, Tan S J R, et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano, 2018, 12: 7562–7570

    Article  Google Scholar 

  31. Nakano M, Wang Y, Kashiwabara Y, et al. Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy. Nano Lett, 2017, 17: 5595–5599

    Article  Google Scholar 

  32. Kang K, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520: 656–660

    Article  Google Scholar 

  33. Zhang X T, Choudhury T H, Chubarov M, et al. Diffusion-controlled epitaxy of large area coalesced WSe2 Monolayers on sapphire. Nano Lett, 2018, 18: 1049–1056

    Article  Google Scholar 

  34. Song J G, Park J, Lee W, et al. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano, 2013, 7: 11333–11340

    Article  Google Scholar 

  35. Shi M L, Chen L, Zhang T B, et al. Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small, 2017, 13: 1603157

    Article  Google Scholar 

  36. Yang P F, Zou X L, Zhang Z P, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun, 2018, 9: 979

    Article  Google Scholar 

  37. Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016, 10: 216–226

    Article  Google Scholar 

  38. Gong C H, Hu K, Wang X P, et al. 2D nanomaterial arrays for electronics and optoelectronics. Adv Funct Mater, 2018, 28: 1706559

    Article  Google Scholar 

  39. Xia F N, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photon, 2014, 8: 899–907

    Article  Google Scholar 

  40. Huo N J, Konstantatos G. Recent progress and future prospects of 2D-based photodetectors. Adv Mater, 2018, 30: 1801164

    Article  Google Scholar 

  41. Lei S, Wen F, Li B, et al. Optoelectronic memory using two-dimensional materials. Nano Lett, 2015, 15: 259–265

    Article  Google Scholar 

  42. Kshirsagar C U, Xu W C, Su Y, et al. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano, 2016, 10: 8457–8464

    Article  Google Scholar 

  43. Zhang E, Wang W Y, Zhang C, et al. Tunable charge-trap memory based on few-layer MoS2. ACS Nano, 2015, 9: 612–619

    Article  Google Scholar 

  44. Wang X D, Liu C S, Chen Y, et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater, 2017, 4: 025036

    Article  Google Scholar 

  45. Wang H, Yu L L, Lee Y H, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12: 4674–4680

    Article  Google Scholar 

  46. Lee Y, Park S, Kim H, et al. Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. Nanoscale, 2015, 7: 11909–11914

    Article  Google Scholar 

  47. van der Zande A M, Huang P Y, Chenet D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 2013, 12: 554–561

    Article  Google Scholar 

  48. Yu H, Liao M Z, Zhao W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11: 12001–12007

    Article  Google Scholar 

  49. Karvonen L, Säynätjoki A, Huttunen M J, et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat Commun, 2017, 8: 15714

    Article  Google Scholar 

  50. Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2013, 12: 754–759

    Article  Google Scholar 

  51. Liu Z, Amani M, Najmaei S, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun, 2014, 5: 5246

    Article  Google Scholar 

  52. Fei L F, Lei S J, Zhang W B, et al. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat Commun, 2016, 7: 12206

    Article  Google Scholar 

  53. Smithe K K H, Suryavanshi S, Rojo M M, et al. Low variability in synthetic monolayer MoS2 devices. ACS Nano, 2017, 11: 8456–8463

    Article  Google Scholar 

  54. Ling X, Lee Y H, Lin Y X, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett, 2014, 14: 464–472

    Article  Google Scholar 

  55. Lim Y R, Song W, Han J K, et al. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv Mater, 2016, 28: 5025–5030

    Article  Google Scholar 

  56. Huang J K, Pu J, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2014, 8: 923–930

    Article  Google Scholar 

  57. Bao W Z, Cai X H, Kim D H, et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl Phys Lett, 2013, 102: 042104

    Article  Google Scholar 

  58. Kobayashi Y, Sasaki S, Mori S, et al. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano, 2015, 9: 4056–4063

    Article  Google Scholar 

  59. Tarasov A, Campbell P M, Tsai M Y, et al. Highly uniform trilayer molybdenum disulfide for wafer-scale device fabrication. Adv Funct Mater, 2014, 24: 6389–6400

    Article  Google Scholar 

  60. Lin Y C, Zhang W J, Huang J K, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4: 6637–6641

    Article  Google Scholar 

  61. Zhang Q, Wang X F, Shen S H, et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat Electron, 2019, 2: 164–170

    Article  Google Scholar 

  62. Song X F, Zan W, Xu H, et al. A novel synthesis method for large-area MoS2 film with improved electrical contact. 2D Mater, 2017, 4: 025051

    Article  Google Scholar 

  63. Luisier M, Lundstrom M, Antoniadis D A, et al. Ultimate device scaling: intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length. In: Proceedings of International Electron Devices Meeting, 2011

  64. Low T, Li M F, Samudra G, et al. Modeling study of the impact of surface roughness on silicon and germanium UTB MOSFETs. IEEE Trans Electron Device, 2005, 52: 2430–2439

    Article  Google Scholar 

  65. Yu X, Kang J, Takenaka M, et al. Evaluation of mobility degradation factors and performance improvement of ultrathin-body germanium-on-insulator MOSFETs by GOI thinning using plasma oxidation. IEEE Trans Electron Device, 2017, 64: 1418–1425

    Article  Google Scholar 

  66. Jin S, Fischetti M V, Tang T W. Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. IEEE Trans Electron Device, 2007, 54: 2191–2203

    Article  Google Scholar 

  67. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9: 768–779

    Article  Google Scholar 

  68. Thiele S, Kinberger W, Granzner R, et al. The prospects of transition metal dichalcogenides for ultimately scaled CMOS. Solid-State Electron, 2018, 143: 2–9

    Article  Google Scholar 

  69. Cao W, Jiang J K, Xie X J, et al. 2-D layered materials for next-generation electronics: opportunities and challenges. IEEE Trans Electron Device, 2018, 65: 4109–4121

    Article  Google Scholar 

  70. Song X F, Guo Z X, Zhang Q C, et al. Progress of large-scale synthesis and electronic device application of two-dimensional transition metal dichalcogenides. Small, 2017, 13: 1700098

    Article  Google Scholar 

  71. Lemme M C, Li L J, Palacios T, et al. Two-dimensional materials for electronic applications. MRS Bull, 2014, 39: 711–718

    Article  Google Scholar 

  72. Kwon H, Jeon P J, Kim J S, et al. Large scale MoS2 nanosheet logic circuits integrated by photolithography on glass. 2D Mater, 2016, 3: 044001

    Article  Google Scholar 

  73. Yu L, Zubair A, Santos E J G, et al. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett, 2015, 15: 4928–4934

    Article  Google Scholar 

  74. Sachid A B, Tosun M, Desai S B, et al. Monolithic 3D CMOS using layered semiconductors. Adv Mater, 2016, 28: 2547–2554

    Article  Google Scholar 

  75. Liu Y D, Ang K W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano, 2017, 11: 7416–7423

    Article  Google Scholar 

  76. Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354: 99–102

    Article  Google Scholar 

  77. Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14: 1195–1205

    Article  Google Scholar 

  78. Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2013, 13: 100–105

    Article  Google Scholar 

  79. Yu L L, Lee Y H, Ling X, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett, 2014, 14: 3055–3063

    Article  Google Scholar 

  80. Kappera R, Voiry D, Yalcin S E, et al. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater, 2014, 2: 092516

    Article  Google Scholar 

  81. Lee S, Tang A, Aloni S, et al. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett, 2016, 16: 276–281

    Article  Google Scholar 

  82. Hu Z H, Wu Z T, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev, 2018, 47: 3100–3128

    Article  Google Scholar 

  83. Kim H G, Lee H B R. Atomic layer deposition on 2D materials. Chem Mater, 2017, 29: 3809–3826

    Article  Google Scholar 

  84. McDonnell S, Brennan B, Azcatl A, et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano, 2013, 7: 10354–10361

    Article  Google Scholar 

  85. Zou X M, Wang J L, Chiu C H, et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv Mater, 2014, 26: 6255–6261

    Article  Google Scholar 

  86. Yang W, Sun Q Q, Geng Y, et al. The integration of sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci Rep, 2015, 5: 11921

    Article  Google Scholar 

  87. Azcatl A, McDonnell S, Kc S, et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl Phys Lett, 2014, 104: 111601

    Article  Google Scholar 

  88. Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12: 4013–4017

    Article  Google Scholar 

  89. Pu J, Funahashi K, Chen C H, et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv Mater, 2016, 28: 4111–4119

    Article  Google Scholar 

  90. Dathbun A, Kim Y, Kim S, et al. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett, 2017, 17: 2999–3005

    Article  Google Scholar 

  91. Zan W, Zhang Q C, Xu H, et al. Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices. Nano Res, 2018, 11: 3739–3745

    Article  Google Scholar 

  92. Li S L, Tsukagoshi K, Orgiu E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem Soc Rev, 2016, 45: 118–151

    Article  Google Scholar 

  93. Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial fermi level pinning at metal-MoS2 interfaces. Nano Lett, 2014, 14: 1714–1720

    Article  Google Scholar 

  94. Kang J H, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 2014, 4: 031005

    Google Scholar 

  95. Ma N, Jena D. Charge scattering and mobility in atomically thin semiconductors. Phys Rev X, 2014, 4: 011043

    Google Scholar 

  96. Schwierz F. Graphene transistors: status, prospects, and problems. Proc IEEE, 2013, 101: 1567–1584

    Article  Google Scholar 

  97. Amani M, Burke R A, Proie R M, et al. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology, 2015, 26: 115202

    Article  Google Scholar 

  98. Zhang T B, Liu H, Wang Y, et al. Fast-response inverter arrays built on wafer-scale MoS2 by atomic layer deposition. Phys Status Solidi RRL, 2019, 13: 1900018

    Article  Google Scholar 

  99. Zhang S M, Xu H, Liao F Y, et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology, 2019, 30: 174002

    Article  Google Scholar 

  100. Das T, Chen X, Jang H, et al. Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small, 2016, 12: 5720–5727

    Article  Google Scholar 

  101. Chiu M H, Tang H L, Tseng C C, et al. Metal-guided selective growth of 2D materials: demonstration of a bottom-up CMOS inverter. Adv Mater, 2019, 31: 1900861

    Article  Google Scholar 

  102. Liu W, Kang J H, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett, 2013, 13: 1983–1990

    Article  Google Scholar 

  103. Tosun M, Chuang S, Fang H, et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano, 2014, 8: 4948–4953

    Article  Google Scholar 

  104. Lin Z Y, Liu Y, Halim U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562: 254–258

    Article  Google Scholar 

  105. Yu L, El-Damak D, Ha S, et al. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015

  106. Yang R, Li H, Smithe K K H, et al. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nat Electron, 2019, 2: 108–114

    Article  Google Scholar 

  107. Liu J Q, Zeng Z Y, Cao X H, et al. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small, 2012, 8: 3517–3522

    Article  Google Scholar 

  108. Huang X, Zheng B, Liu Z D, et al. Coating two-dimensional nanomaterials with metal-organic frameworks. ACS Nano, 2014, 8: 8695–8701

    Article  Google Scholar 

  109. Yin Z Y, Zeng Z Y, Liu J Q, et al. Memory devices using a mixture of MoS2 and graphene oxide as the active layer. Small, 2013, 9: 727–731

    Article  Google Scholar 

  110. Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8: 497–501

    Article  Google Scholar 

  111. Huo N, Konstantatos G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat Commun, 2017, 8: 572

    Article  Google Scholar 

  112. Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699–712

    Article  Google Scholar 

  113. Chang Y H, Zhang W, Zhu Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8: 8582–8590

    Article  Google Scholar 

  114. Zhou Y H, An H N, Gao C, et al. UV-Vis-NIR photodetector based on monolayer MoS2. Mater Lett, 2019, 237: 298–302

    Article  Google Scholar 

  115. Xue Y Z, Zhang Y P, Liu Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10: 573–580

    Article  Google Scholar 

  116. Kim Y, Bark H, Kang B, et al. Wafer-scale substitutional doping of monolayer MoS2 films for high-performance optoelectronic devices. ACS Appl Mater Interfaces, 2019, 11: 12613–12621

    Article  Google Scholar 

  117. Agarwal A, Lang J. Foundations of Analog and Digital Electronic Circuits. Amsterdam: Elsevier 2005

    MATH  Google Scholar 

  118. Cheng R, Bai J W, Liao L, et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci USA, 2012, 109: 11588–11592

    Article  Google Scholar 

  119. Sanne A, Ghosh R, Rai A, et al. Radio frequency transistors and circuits based on CVD MoS2. Nano Lett, 2015, 15: 5039–5045

    Article  Google Scholar 

  120. Chang H Y, Yogeesh M N, Ghosh R, et al. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv Mater, 2016, 28: 1818–1823

    Article  Google Scholar 

  121. Gao Q G, Zhang Z F, Xu X L, et al. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat Commun, 2018, 9: 4778

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program (Grant No. 2016-YFA0203900), Shanghai Municipal Science and Technology Commission (Grant No. 18JC1410300), and National Natural Science Foundation of China (Grant No. 61874154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zhang, H., Chen, X. et al. Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides. Sci. China Inf. Sci. 62, 220401 (2019). https://doi.org/10.1007/s11432-019-2651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2651-x

Keywords

Navigation