Skip to main content
Log in

Tracking control of redundant manipulator under active remote center-of-motion constraints: an RNN-based metaheuristic approach

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we propose a recurrent neural network (RNN) for the tracking control of surgical robots while satisfying remote center-of-motion (RCM) constraints. RCM constraints enforce rules suggesting that the surgical tip should not go beyond the region of incision while tracking the commands of the surgeon. Violations of RCM constraints can result in serious injury to the patient. We unify the RCM constraints with the tracing control by formulating a single constrained optimization problem using a penalty-term approach. The penalty-term actively rewards the optimizer for satisfying the RCM constraints. We then propose an RNN-based metaheuristic optimization algorithm called “Beetle Antennae Olfactory Recurrent Neural Network (BAORNN)” for solving the formulated optimization problem in real time. The proposed control framework can track the surgeon’s commands and satisfy the RCM constraints simultaneously. Theoretical analysis is performed to demonstrate the stability and convergence of the BAORNN algorithm. Simulations using LBR IIWA14, a 7-degree-of-freedom robotic arm, are performed to analyze the performance of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang C, Jiang Y, Li Z, et al. Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans Ind Inf, 2017, 13: 1162–1171

    Article  Google Scholar 

  2. Liu Y J, Tong S. Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input. IEEE Trans Cybern, 2015, 45: 497–505

    Article  Google Scholar 

  3. Hu G, Gans N, Fitz-Coy N, et al. Adaptive homography-based visual servo tracking control via a quaternion formulation. IEEE Trans Contr Syst Technol, 2010, 18: 128–135

    Article  Google Scholar 

  4. Yang C, Zeng C, Cong Y, et al. A learning framework of adaptive manipulative skills from human to robot. IEEE Trans Ind Inf, 2019, 15: 1153–1161

    Article  Google Scholar 

  5. La H M, Dinh T H, Pham N H, et al. Automated robotic monitoring and inspection of steel structures and bridges. Robotica, 2019, 37: 947–967

    Article  Google Scholar 

  6. Yang C, Peng G, Cheng L, et al. Force sensorless admittance control for teleoperation of uncertain robot manipulator using neural networks. IEEE Trans Syst Man Cybern Syst, 2019. doi: https://doi.org/10.1109/TSMC.2019.2920870

  7. Kim U, Lee D H, Kim Y B, et al. S-surge: novel portable surgical robot with multiaxis force-sensing capability for minimally invasive surgery. IEEE/ASME Trans Mechatron, 2017, 22: 1717–1727

    Article  Google Scholar 

  8. Aghakhani N, Geravand M, Shahriari N, et al. Task control with remote center of motion constraint for minimally invasive robotic surgery. In: Proceedings of 2013 IEEE International Conference on Robotics and Automation, 2013. 5807–5812

  9. Kuo C H, Dai J S. Kinematics of a fully-decoupled remote center-of-motion parallel manipulator for minimally invasive surgery. J Med Dev, 2012, 6: 021008

    Article  Google Scholar 

  10. Jin L, Li S, Luo X, et al. Neural dynamics for cooperative control of redundant robot manipulators. IEEE Trans Ind Inf, 2018, 14: 3812–3821

    Article  Google Scholar 

  11. La H M, Sheng W. Multi-agent motion control in cluttered and noisy environments. J Commun, 2013, 8: 32–46

    Article  Google Scholar 

  12. La H M. Multi-robot swarm for cooperative scalar field mapping. In: Proceedings of Handbook of Research on Design, Control, and Modeling of Swarm Robotics, 2016. 383–395

  13. La H M, Lim R, Sheng W. Multirobot cooperative learning for predator avoidance. IEEE Trans Contr Syst Technol, 2015, 23: 52–63

    Article  Google Scholar 

  14. Khan A H, Li S, Luo X. Obstacle avoidance and tracking control of redundant robotic manipulator: an RNN-based meta-heuristic approach. IEEE Trans Ind Inf, 2020, 16: 4670–4680

    Article  Google Scholar 

  15. Guo D, Zhang Y. Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipulators. IEEE Trans Ind Electron, 2014, 61: 6903–6914

    Article  Google Scholar 

  16. Tevatia G, Schaal S. Inverse kinematics for humanoid robots. In: Proceedings of IEEE International Conference on Robotics and Automation Symposia Proceedings, 2000. 294–299

  17. Chen G, Wang J, Wang H. A new type of planar two degree-of-freedom remote center-of-motion mechanism inspired by the peaucellier-lipkin straight-line linkage. J Mech Des, 2019, 141: 015001

    Article  Google Scholar 

  18. Nisar S, Endo T, Matsuno F. Design and optimization of a 2-degree-of-freedom planar remote center of motion mechanism for surgical manipulators with smaller footprint. Mechanism Machine Theor, 2018, 129: 148–161

    Article  Google Scholar 

  19. Ortmaier T, Hirzinger G. Cartesian control issues for minimally invasive robot surgery. In: Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000. 565–571

  20. Sandoval J, Poisson G, Vieyres P. A new kinematic formulation of the RCM constraint for redundant torque-controlled robots. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017. 4576–4581

  21. Sandoval J, Poisson G, Vieyres P. Improved dynamic formulation for decoupled cartesian admittance control and RCM constraint. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016. 1124–1129

  22. Yang D, Wang L, Xie Y, et al. Optimization-based inverse kinematic analysis of an experimental minimally invasive robotic surgery system. In: Proceedings of 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015. 1427–1432

  23. Su H, Shuai L, Jagadesh M, et al. Manipulability optimization control of a serial redundant robot for robot-assisted minimally invasive surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, 2019. 1–6

  24. Lai W, Cao L, Xu Z, et al. Distal end force sensing with optical fiber bragg gratings for tendon-sheath mechanisms in flexible endoscopic robots. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018. 1–5

  25. Bruno D, Calinon S, Caldwell D G. Learning autonomous behaviours for the body of a flexible surgical robot. Auton Robot, 2017, 41: 333–347

    Article  Google Scholar 

  26. Calinon S, Bruno D, Malekzadeh M S, et al. Human-robot skills transfer interfaces for a flexible surgical robot. Comput Methods Programs Biomed, 2014, 116: 81–96

    Article  Google Scholar 

  27. Xu K, Simaan N. Actuation compensation for flexible surgical snake-like robots with redundant remote actuation. In: Proceedings of IEEE International Conference on Robotics and Automation, 2006. 4148–4154

  28. Li S, Chen S, Liu B, et al. Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing, 2012, 91: 1–10

    Article  Google Scholar 

  29. Jin L, Li S, La H M, et al. Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans Ind Electron, 2017, 64: 4710–4720

    Article  Google Scholar 

  30. Yang C, Wu H, Li Z, et al. Mind control of a robotic arm with visual fusion technology. IEEE Trans Ind Inf, 2018, 14: 3822–3830

    Article  Google Scholar 

  31. He W, Huang H, Ge S S. Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans Cybern, 2017, 47: 3136–3147

    Article  Google Scholar 

  32. Wang H, Chen B, Lin C. Adaptive neural tracking control for a class of stochastic nonlinear systems. Int J Robust Nonlin Control, 2014, 24: 1262–1280

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiao L, Li S, Lin F J, et al. Zeroing neural dynamics for control design: comprehensive analysis on stability, robustness, and convergence speed. IEEE Trans Ind Inf, 2019, 15: 2605–2616

    Article  Google Scholar 

  34. Wang H, Liu X, Liu K. Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans Neural Netw Learn Syst, 2016, 27: 510–523

    Article  MathSciNet  Google Scholar 

  35. Jing L D, Zhang J F. Tracking control and parameter identification with quantized ARMAX systems. Sci China Inf Sci, 2019, 62: 199203

    Article  MathSciNet  Google Scholar 

  36. Liao B, Liu W. Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators. Robotica, 2015, 33: 2100–2113

    Article  Google Scholar 

  37. Jin L, Zhang Y. Discrete-time zhang neural network of O(τ3) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation. Neurocomputing, 2014, 142: 165–173

    Article  Google Scholar 

  38. Liegeois A. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Syst Man Cybern, 1977, 7: 868–871

    Article  MATH  Google Scholar 

  39. Zanchettin A M, Bascetta L, Rocco P. Achieving humanlike motion: resolving redundancy for anthropomorphic industrial manipulators. IEEE Robot Automat Mag, 2013, 20: 131–138

    Article  Google Scholar 

  40. Cha S H, Lasky T A, Velinsky S A. Kinematic redundancy resolution for serial-parallel manipulators via local optimization including joint constraints. Mech Based Des Struct Mach, 2006, 34: 213–239

    Article  Google Scholar 

  41. Cavallo A, Russo A, Canciello G. Hierarchical control for generator and battery in the more electric aircraft. Sci China Inf Sci, 2019, 62: 192207

    Article  MathSciNet  Google Scholar 

  42. Ding H, Tso S K. A fully neural-network-based planning scheme for torque minimization of redundant manipulators. IEEE Trans Ind Electron, 1999, 46: 199–206

    Article  Google Scholar 

  43. He W, Yan Z, Sun Y, et al. Neural-learning-based control for a constrained robotic manipulator with flexible joints. IEEE Trans Neural Netw Learn Syst, 2018, 29: 5993–6003

    Article  Google Scholar 

  44. Wang H, Liu P X, Bao J, et al. Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances. IEEE Trans Neural Netw Learn Syst, 2019,: 1–12

  45. Na J, Ren X M, Zheng D D. Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer. IEEE Trans Neural Netw Learn Syst, 2013, 24: 370–382

    Article  Google Scholar 

  46. He W, Yin Z, Sun C. Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier lyapunov function. IEEE Trans Cybern, 2017, 47: 1641–1651

    Article  Google Scholar 

  47. Yang C, Jiang Y, Na J, et al. Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics. IEEE Trans Fuzzy Syst, 2019, 27: 574–588

    Article  Google Scholar 

  48. Na J, Jing B, Huang Y, et al. Unknown system dynamics estimator for motion control of nonlinear robotic systems. IEEE Trans Ind Electron, 2020, 67: 3850–3859

    Article  Google Scholar 

  49. Wang H, Liu X P, Xie X, et al. Adaptive fuzzy asymptotical tracking control of nonlinear systems with unmodeled dynamics and quantized actuator. Inf Sci, 2018. doi: https://doi.org/10.1016/j.ins.2018.04.011

  50. Yang C, Jiang Y, He W, et al. Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans Ind Electron, 2018, 65: 8112–8123

    Article  Google Scholar 

  51. Na J, Mahyuddin M N, Herrmann G, et al. Robust adaptive finite-time parameter estimation and control for robotic systems. Int J Robust Nonlin Control, 2015, 25: 3045–3071

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang H, Liu P X, Zhao X, et al. Adaptive fuzzy finite-time control of nonlinear systems with actuator faults. IEEE Trans Cybern, 2020, 50: 1786–1797

    Article  Google Scholar 

  53. Li M, Kapoor A, Taylor R H. A constrained optimization approach to virtual fixtures. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. 1408–1413

  54. Parejo J A, Ruiz-Corté A, Lozano S, et al. Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput, 2012, 16: 527–561

    Article  Google Scholar 

  55. Yang X-S. Engineering Optimization: An Introduction With Metaheuristic Applications. Hoboken: John Wiley & Sons, 2010

    Book  Google Scholar 

  56. Ren Z, Li P, Fang J, et al. SBA: an efficient algorithm for address assignment in zigbee networks. Wirel Pers Commun, 2013, 71: 719–734

    Article  Google Scholar 

  57. Fang J, Zhang L, Li H. Two-dimensional pattern-coupled sparse Bayesian learning via generalized approximate message passing. IEEE Trans Image Process, 2016, 25: 2920–2930

    Article  MathSciNet  MATH  Google Scholar 

  58. Fang J, Li H B. Distributed estimation of Gauss-Markov random fields with one-bit quantized data. IEEE Signal Process Lett, 2010, 17: 449–452

    Article  Google Scholar 

  59. Fang J, Shen Y, Li F, et al. Support knowledge-aided sparse Bayesian learning for compressed sensing. In: Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015. 3786–3790

  60. Jiang X, Li S. BAS: beetle antennae search algorithm for optimization problems. 2017. ArXiv: 1710.10724

  61. Zhang Y, Li S, Xu B. Convergence analysis of beetle antennae search algorithm and its applications. 2019. ArXiv: 1904.02397

  62. Zhu Z, Zhang Z, Man W, et al. A new beetle antennae search algorithm for multi-objective energy management in microgrid. In: Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2018. 1599–1603

  63. Yin X, Ma Y. Aggregation service function chain mapping plan based on beetle antennae search algorithm. In: Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering, 2018. 225–230

  64. Zhang Y, Li S, Zou J, et al. A passivity-based approach for kinematic control of redundant manipulators with constraints. IEEE Trans Ind Inf, 2020, 16: 3029–3038

    Article  Google Scholar 

  65. Chen D, Zhang Y, Li S. Tracking control of robot manipulators with unknown models: a jacobian-matrix-adaption method. IEEE Trans Ind Inf, 2018, 14: 3044–3053

    Article  Google Scholar 

  66. Wu G. Kinematic analysis and optimal design of a wall-mounted four-limb parallel Schonflies-motion robot for pick-and-place operations. J Intell Robot Syst, 2017, 85: 663–677

    Article  Google Scholar 

  67. Al-Naimi I, Taeim A, Alajdah N. Fully-automated parallel-kinematic robot for multitask industrial operations. In: Proceedings of 2018 15th International Multi-Conference on Systems, Signals & Devices, 2018. 390–395

  68. Menon A, Prakash R, Behera L. Adaptive critic based optimal kinematic control for a robot manipulator. In: Proceedings of International Conference on Robotics and Automation (ICRA), 2019. 1316–1322

  69. Corke P I. A robotics toolbox for MATLAB. IEEE Robot Automat Mag, 1996, 3: 24–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.H., Li, S. & Cao, X. Tracking control of redundant manipulator under active remote center-of-motion constraints: an RNN-based metaheuristic approach. Sci. China Inf. Sci. 64, 132203 (2021). https://doi.org/10.1007/s11432-019-2735-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2735-6

Keywords

Navigation