Skip to main content
Log in

Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Lasers with multi-wavelength colloidal quantum dots (CQDs) can be achieved using complex grating structures and flexible substrate. The structure contains graduated periods and rectangular cavity fabricated through interference lithography, which acts as the distributed feedback cavity. A layer of densely packed CQD film is deposited on the cavity via spin coating technique. The performance of CQD lasers based on different distributed feedback cavities is investigated. Multi-wavelength lasing is achieved based on a flexible rectangular cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gardner K, Aghajamali M, Vagin S, et al. Ultrabright fluorescent and lasing microspheres from a conjugated polymer. Adv Funct Mater, 2018, 28: 1802759

    Article  Google Scholar 

  2. Mathies F, Brenner P, Hernandez-Sosa G, et al. Inkjet-printed perovskite distributed feedback lasers. Opt Express, 2018, 26: 144–152

    Article  Google Scholar 

  3. Tsutsumi N, Hinode T. Tunable organic distributed feedback dye laser device excited through Förster mechanism. Appl Phys B, 2017, 123: 93

    Article  Google Scholar 

  4. Samuel I D W, Turnbull G A. Organic semiconductor lasers. Chem Rev, 2007, 107: 1272–1295

    Article  Google Scholar 

  5. Cai S S, Han Z Y, Wang F L, et al. Review on flexible photonics/electronics integrated devices and fabrication strategy. Sci China Inf Sci, 2018, 61: 060410

    Article  Google Scholar 

  6. Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci, 2000, 30: 545–610

    Article  Google Scholar 

  7. Kagan C R, Lifshitz E, Sargent E H, et al. Building devices from colloidal quantum dots. Science, 2016, 353: 5523

    Article  Google Scholar 

  8. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933–937

    Article  Google Scholar 

  9. Chen O, Zhao J, Chauhan V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater, 2013, 12: 445–451

    Article  Google Scholar 

  10. Guzelturk B, Kelestemur Y, Gungor K, et al. Stable and low-threshold optical gain in CdSe/CdS quantum dots: an all-colloidal frequency up-converted laser. Adv Mater, 2015, 27: 2741–2746

    Article  Google Scholar 

  11. Snee P T, Chan Y, Nocera D G, et al. Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Adv Mater, 2005, 17: 1131–1136

    Article  Google Scholar 

  12. Eisler H J, Sundar V C, Bawendi M G, et al. Color-selective semiconductor nanocrystal laser. Appl Phys Lett, 2002, 80: 4614–4616

    Article  Google Scholar 

  13. Wang Y, Fong K E, Yang S, et al. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers. Laser Photonics Rev, 2015, 9: 507–516

    Article  Google Scholar 

  14. Heo J, Jiang Z, Xu J, et al. Coherent and directional emission at 1.55 µm from PbSe colloidal quantum dot electroluminescent device on silicon. Opt Express, 2011, 19: 26394–26398

    Article  Google Scholar 

  15. Park Y S, Bae W K, Baker T, et al. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett, 2015, 15: 7319–7328

    Article  Google Scholar 

  16. Klimov V I, Ivanov S A, Nanda J, et al. Single-exciton optical gain in semiconductor nanocrystals. Nature, 2007, 447: 441–446

    Article  Google Scholar 

  17. Zavelani-Rossi M, Lupo M G, Tassone F, et al. Suppression of biexciton auger recombination in CdSe/CdS Dot/Rods: role of the electronic structure in the carrier dynamics. Nano Lett, 2010, 10: 3142–3150

    Article  Google Scholar 

  18. Bae W K, Padilha L A, Park Y S, et al. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano, 2013, 7: 3411–3419

    Article  Google Scholar 

  19. Grim J Q, Christodoulou S, Di Stasio F, et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat Nanotech, 2014, 9: 891–895

    Article  Google Scholar 

  20. Wang Y, Ta V D, Leck K S, et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots. Nano Lett, 2017, 17: 2640–2646

    Article  Google Scholar 

  21. le Feber B, Prins F, De Leo E, et al. Colloidal-quantum-dot ring lasers with active color control. Nano Lett, 2018, 18: 1028–1034

    Article  Google Scholar 

  22. Rong K, Sun C, Shi K, et al. Room-temperature planar lasers based on water-dripping microplates of colloidal quantum dots. ACS Photon, 2017, 4: 1776–1784

    Article  Google Scholar 

  23. Dang C, Lee J, Roh K, et al. Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films. Appl Phys Lett, 2013, 103: 171104

    Article  Google Scholar 

  24. Roh K, Dang C, Lee J, et al. Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers. Opt Express, 2014, 22: 18800–18806

    Article  Google Scholar 

  25. Han C, Jung H, Lee J, et al. Wet-transfer of freestanding dense colloidal quantum dot films and their photonic device application. Adv Mater Technol, 2018, 3: 1700291

    Article  Google Scholar 

  26. Wang Y, Ta V D, Gao Y, et al. Stimulated emission and lasing from CdSe/CdS/ZnS core-multi-shell quantum dots by simultaneous three-photon absorption. Adv Mater, 2014, 26: 2954–2961

    Article  Google Scholar 

  27. Huang Y, Ma X, Yang Y, et al. Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor. Sci China Inf Sci, 2018, 61: 080401

    Article  MathSciNet  Google Scholar 

  28. Li Z, Zhang Z, Scherer A, et al. Mechanically tunable optofluidic distributed feedback dye laser. Opt Express, 2006, 14: 10494–10499

    Article  Google Scholar 

  29. Stroisch M, Woggon T, Teiwes-Morin C, et al. Intermediate high index layer for laser mode tuning in organic semiconductor lasers. Opt Express, 2010, 18: 5890–5895

    Article  Google Scholar 

  30. Camposeo A, Del Carro P, Persano L, et al. Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules. Adv Mater, 2012, 24: 221–225

    Article  Google Scholar 

  31. Zhai T, Wang Y, Chen L, et al. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate. Nanoscale, 2015, 7: 12312–12317

    Article  Google Scholar 

  32. Zhai T, Tong F, Wang Y, et al. Polymer lasers assembled by suspending membranes on a distributed feedback grating. Opt Express, 2016, 24: 22028

    Article  Google Scholar 

  33. Gao Y, Huang C, Hao C, et al. Lead halide perovskite nanostructures for dynamic color display. ACS Nano, 2018, 12: 8847–8854

    Article  Google Scholar 

  34. Rong K, Gan F, Shi K, et al. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv Mater, 2018, 30: 1706546

    Article  Google Scholar 

  35. Klimov V I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu Rev Phys Chem, 2007, 58: 635–673

    Article  Google Scholar 

  36. Lee D U, Kim D H, Choi D H, et al. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots. Opt Express, 2016, 24: 350–357

    Article  Google Scholar 

  37. Tang B, Dong H, Sun L, et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano, 2017, 11: 10681–10688

    Article  Google Scholar 

  38. Chen C, Tong F, Cao F, et al. Tunable polymer lasers based on metal-dielectric hybrid cavity. Opt Express, 2018, 26: 32048

    Article  Google Scholar 

  39. Cao F, Niu L, Tong J, et al. Hybrid lasing in a plasmonic cavity. Opt Express, 2018, 26: 13383–13389

    Article  Google Scholar 

  40. Riechel S, Kallinger C, Lemmer U, et al. A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Appl Phys Lett, 2000, 77: 2310–2312

    Article  Google Scholar 

  41. Heliotis G, Xia R, Turnbull G A, et al. Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv Funct Mater, 2004, 14: 91–97

    Article  Google Scholar 

  42. Foucher C, Guilhabert B, Laurand N, et al. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass. Appl Phys Lett, 2014, 104: 141108

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61822501, 11574015) and Beijing Natural Science Foundation (Grant No. Z180015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianrui Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, A., Tong, J., Chen, C. et al. Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities. Sci. China Inf. Sci. 63, 182401 (2020). https://doi.org/10.1007/s11432-019-2753-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2753-3

Keywords

Navigation