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Abstract Localization accuracy is of paramount importance for the proper operation of underwater optical

wireless sensor networks (UOWSNs). However, underwater localization is prone to hostile environmental

impediments such as drifts due to the surface and deep currents. These cause uncertainty in the deployed

anchor node positions and pose daunting challenges to achieve accurate location estimations. Therefore, this

paper analyzes the performance of three-dimensional (3D) localization for UOWSNs and derive a closed-

form expression for the Cramer Rao lower bound (CRLB) by using time of arrival (ToA) and angle of arrival

(AoA) measurements under the presence of uncertainty in anchor node positions. Numerical results validate

the analytical findings by comparing the localization accuracy in scenarios with and without anchor nodes

position uncertainty. Results are also compared with the linear least square (LSS) method and weighted LLS

(WLSS) method.
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1 Introduction

Underwater wireless communications (UWCs) can be carried out by different wireless carrier types such

as radio frequency (RF) signals, acoustic waves, magnetic induction (MI), and light beams. RF-based

UWC is greatly affected by high attenuation because the nature of seawater is conductive, and therefore,

it requires huge antennas and power-hungry transceivers. For this reason, acoustic UWC systems are

the most commonly used UWC systems due to their long transmission range in the order of kilometers.

Nevertheless, acoustic waves have low data rates, limited bandwidth, and high latency because of their low

propagation speed [1]. Alternatively, underwater optical wireless communication (UOWC) is desirable

for their high data rates in the order of Gbps and very low latency thanks to the high propagation

speed, energy efficiency, and low-cost [2]. Therefore, UOWC has recently been considered as a promising

technology for underwater optical wireless sensor networks (UOWSNs) in many scientific, industrial, and

military applications [3].

The data gathered by the sensors need to be geographically tagged to provide valuable information.

Location is also critical for proper functioning of the pointing and alignment mechanism, which is closely

related to the link reliability. Furthermore, accurate localization is necessary to develop routing protocols

to mitigate the short-range limitation of UOWCs and enhance end-to-end network performance. UOWSN
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localization is more demanding than terrestrial wireless networks due to the unavailability of GPS signals

and unique propagation characteristics of light in the aquatic medium [4]. Recently, numerous localization

techniques for UOWSNs have been proposed in two-dimensional space [?, 4–6], however, the directed

nature of UOWCs calls for novel 3D localization techniques. In [7], a 3D localization technique has been

proposed in the presence of outliers where the position of anchors is assumed to be perfectly known.

However, the accuracy of any localization technique depends on the type of ranging and the anchor

positions [8]. The problem of anchor node uncertainty is studied in the past for various indoor localization

techniques. For example, an RSS-based localization method was proposed in [9] with perturbed anchor

locations where a weighted least square solution was used. Similarly, semi-definite programming was used

in [10] and [11], for a ToA based wireless sensor network localization with uncertain anchor positions.

However, none of the above works consider a joint ToA and AoA-based approach with uncertain anchor

position in UOWSNs. In practice, the underwater environment is dynamic in nature, which causes

anchors to drift apart from their actual positions. Therefore, it is required to develop a localization

technique that considers the anchor node position uncertainty. The major contributions of this paper

can be summarized as follows:

• Firstly, the Cramer Rao lower bound (CRLB) is derived for 3D UOWSNs localization with the joint

ToA and AoA ranging measurements. The CRLB characterizes the lower bound for the error variance of

any unbiased estimator [12].

• Secondly, the analysis is extended to the case when there is uncertainty in the anchor positions,

which is more practical and challenging. Finally, the results for the CRLB are compared with and

without uncertainty in the anchor positions.

• Finally, the performance of the LSS [13] and WLLS [14] solutions are compared with the CRLB.

Numerical results show that the uncertainty in the anchor positions provides a practical bound.

The remainder of the paper is organized as follows: Section II formulates the localization problem with

uncertainty in the anchor positions. Section III derives the CRLB for 3D localization with anchor position

uncertainty (APU). Following the numerical results in Section IV, Section V concludes the paper.

2 Problem Formulation

We consider a 3D-UOWSN where a source node and M anchor nodes are randomly deployed as shown in

Fig. 1. The location of the source node is unknown, whereas that of anchor nodes is known a priori. The

propagation loss of UOWC channel is mainly driven by the absorption and scattering effects of the aquatic

medium. Based on the commonly used Beer-Lambert channel model, the range between two nodes can be

measured by the received signal strength [4, 6]. In this work, however, the range measurements between

the source node and the anchor nodes are estimated by using both ToA and AoA methods. ToA method

measures the distance to an anchor node i based on the measured propagation time ti and underwater

speed of light c, i.e., di = c · ti where c ≈ 2.55× 108. On the other hand, we assume that the source node

has multiple photo-diodes in different directions to receive signals from multiple anchor nodes. Based on

the signal received at different photo-diodes from different anchors, the azimuth and elevation angles are

calculated.

Moreover, we consider that the range measurements are corrupted by Gaussian noise, which is a

common assumption used in the literature [15,16]. Also, a more realistic assumption of the uncertainty in

anchor positions is introduced. Likewise, the UOWC channel changes rapidly, and therefore to reduce the

effect of its temporal nature, we consider the average value of both the ToA and AoA range measurements.

The actual position of the source node is denoted by ` = [x, y, z]T and the uncertain location of j-th

anchor is denoted by ˆ̀
j = [x̂j , ŷj , ẑj ]

T . The uncertainty in the anchor positions is not exactly known and

thus modeled as a random variable following a normal distribution with zero mean and covariance Cj

which also defines the prior distribution of uncertainty in the j-th anchor node position. The purpose of

the proposed theoretical analysis is to provide a lower bound on the error variance of the 3D localization

for a source node given that the noisy range measurements are available between the source node and
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Uncertain Anchor positions

Figure 1 System model.

j-th anchor node with the uncertain position.

In order to evaluate the performance of any localization technique, several metrics are used, such as

geometric dilution of precision (GDOP), root mean squared error (RMSE), and circular error probability

(CEP). In this paper, we focus on the variance of the location estimation that is defined by the CRLB.

It is worth noting that the derived RMSE of the location estimator is equivalent to the CRLB in case

of unbiased estimation. In the following, we derive the CRLB for joint ToA and AoA measurements,

and then we extend the derivation to the case where there is uncertainty in the anchor positions. Based

on [4, 5], the noisy range measurements for UOWC can be written as 7i = gi(`) + ηi, i ∈ [1, 2, ..., 3M ]

where the first term,

gi(`) =


dj =

√
x̃2
j + ỹ2

j + z̃2
j , i = 3j − 2

φj = tan−1
(
ỹj
x̃j

)
, i = 3j − 1

θj = cos−1
(

z̃j
g3j−2(`)

)
, i = 3j

, (1)

represents the ToA and AoA measurements for i = 3j − 2 and i = 3j − 1, 3j, respectively. The terms

x̃j , ỹj , and z̃j are equal to x− xj , y − yj , and z − zj , respectively. ηi is the measurement noise which is

modeled as zero mean Gaussian random variable with variances equal to σ2
d̂j

, σ2
φ̂j

, and σ2
θ̂j

for i = 3j− 2,

i = 3j − 1, and i = 3j, respectively [17]. The subscripts d̂j , φ̂j , and θ̂j correspond to the estimated

distance, azimuth angle, and elevation angle from the source node to the j-th anchor node, respectively.

The range measurements can be written in the 1× 3M vector forms as 7 = gi(`) + η. Since the ranging

errors are modeled as Gaussian random variables, the probability density function for range measurements

is given by

p(7|`) =
1√

(2π)3MΠ3M
j=1σnj

exp

(
−
∑3M
j=1

(7j−gj(`))
2

2σ2nj

)
. (2)

The CRLB is equivalent to the inverse of the Fisher information matrix (FIM), which is given in [17] as

CRLB(˜̀
k) = [J −1(`)]k,k, (3)

where J(`) is the FIM and k ∈ {1, 2, 3} for 3D localization. The elements of FIM are calculated by taking

the partial derivatives of the log likelihood function (2) with respect to each location coordinate as follows

[J(`)]k,q = −E
(
∂2 log(p(7|`))

∂`k∂`q

)
, (4)

where E(·) represents the expectation operator and k, q ∈ {1, 2, 3}. After some manipulations, the FIM

elements can be written as

[J(`)]1,1 =

M∑
j=1

3kjµ

[(
x̃j

σdjdj

)2

+

(
ỹj

σφjd
2
2,j

)2
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+

(
x̃j z̃j

σθjd
2
jd2,j

)2
]
, (5)

[J(`)]1,2 =

M∑
j=1

3kjµx̃j ỹj ×

[
1

σ2
dj
d2
j

− 1

σ2
φj
d4

2,j

+

(
z̃j

σθjd
2
jd2,j

)2
]
, (6)

[J(`)]1,3 =

M∑
j=1

3kjµ
x̃j z̃j
d2
j

[
1

σ2
dj

− 1

σ2
θj
d2
j

]
, (7)

[J(`)]2,2 =

M∑
j=1

3kjµ

[(
ỹj

σdjdj

)2

+

(
x̃j

σφjd
2
2,j

)2

+

(
ỹj z̃j

σθjd
2
jd2,j

)2
]
, (8)

[J(`)]2,3 =

M∑
j=1

3kjµ
ỹj z̃j
d2
j

[
1

σ2
dj

− 1

σ2
θj
d2
j

]
, (9)

[J(`)]3,3 =

M∑
j=1

3kjµ
1

d2
j

[(
z̃j
σdj

)
+

(
d2,j

σθjdj

)2
]
. (10)

Note that [J(`)]k,q = [J(`)]q,k, d2,j =
√
x̃2
j + ỹ2

j , kj =
PtjAj cos θ

2π(1−cos θ0) , and µ = exp(−c(λ)). The terms in kj

and µ consists of the transmit power from the j-th anchor Ptj , aperture area of the receiver Aj , trajectory

of the signal θ, divergance angle θ0, and extinction co-efficient of the water c(λ) respectively. Finally, the

CRLB of the 3D localization is estimated as CRLB( ˙̀) = CRLB(ẋ) + CRLB(ẏ) + CRLB(ż), where

CRLB(ẋ) =
[J(`)]2,2[J(`)]3,3 − [J(`)]22,3

|[J(`)]|
, (11)

CRLB(ẏ) =
[J(`)]1,1[J(`)]3,3 − [J(`)]21,3

|[J(`)]|
, (12)

CRLB(ż) =
[J(`)]1,1[J(`)]2,2 − [J(`)]21,2

|[J(`)]|
, (13)

(ż, ẏ, ż) is the final estimate of the source location, and | · | represents the determinant operation. It is

clear from above that the accuracy of the CRLB depends on that of the ranging measurements, placement

of anchors, and estimation of angles.

3 Analysis with Uncertainty in Anchor Positions

Although it is a common practice to assume that the position of an anchor is perfectly known, this is

not a realistic assumption, especially in the underwater environment where anchors can swing and drift

due to surface waves and deep currents. Therefore, it is necessary to develop more practical localization

techniques which account for the error in the anchor positions. The error in anchor position can be

modeled as an additive term to the observation as 7̂i = ĝi(`) + ηi where

ĝi(`) =


d̄j =

√
x̄2
j + ȳ2

j + z̄2
j + ηd̄j , i = 3j − 2

φ̄j = tan−1
(
ȳj
x̄j

)
+ ηφ̄j , i = 3j − 1

θ̄j = cos−1
(

z̄j
ĝ3j−2(`)

)
+ ηθ̄j , i = 3j.

(14)



Nasir Saeed, et al. Sci China Inf Sci 5

The notations of x̄j , ȳj and z̄j are equal to x− x̂j , y − ŷj , and z − ẑj respectively. Let the error for each

coordinate of anchor j to be ∆xj = xj − x̂j , ∆yj = yj − ŷj , and ∆zj = zj − ẑj respectively. Then, the x,

y, and z coordinate errors for anchor j are modeled as Gaussian random variables with zero mean and

variances of σ2
∆xj

, σ2
∆yj

, and σ2
∆zj

, respectively [18]. In order to compute ηd̄j , ηφ̄j , ηθ̄j , we assume that

the noise is small and therefore the following trigonometric approximations holds:

tan(φj + ηφ̄j ) ≈
sin(φj) + ηφ̄j cos(φj)

cos(φj)− ηφ̄j sin(φj)
, (15)

cos(θj + ηθ̄j ) ≈ cos(θj)− ηθ̄j sin(θj). (16)

By using the above approximations and after making some algebraic manipulations, we obtain

ηd̄j ≈
x̃j∆xj + ỹj∆yj + z̃j∆zj

dj
, (17)

ηφ̄j ≈
cos(φj)∆yj − sin(φj)∆xj
cos(φj)(x̃j) + sin(φj)(ỹj)

, (18)

ηθ̄j ≈ −
∆zj

dj sin(θj)
. (19)

Now consider υj = [ηd̄j , ηφ̄j , ηθ̄j ]
T with co-variance Cj = E[υjυ

T
j ] where the elements of the co-varaince

matrix are given as

[Cj ]1,1 =
σ2

∆xj
x̃2
j + σ2

∆yj
ỹ2
j + σ2

∆zj
z̃2
j

d2
j

(20)

[Cj ]1,2 =
sin(φj)σ

2
∆xj

x̃j + cos(φj)σ
2
∆yj

ỹj(
x̃j cos(φj) + ỹj sin(φj)

)
dj

(21)

[Cj ]1,3 =
−z̃jσ2

∆zj

sin(θj)d2
j

, (22)

[Cj ]2,2 =
sin2(φj)σ

2
∆xj

+ cos2(φj)σ
2
∆yj(

x̃j cos(φj) + ỹj sin(φj)

)2 , (23)

[Cj ]2,3 = 0, and [Cj ]3,3 =

(
σ∆zj

sin(θj)dj

)2

. (24)

Matrix Cj is symmetric, hence, [Cj ]k,q = [Cj ]q,k. Based on the co-variance matrix, the PDF of 7̂j is

written as

p(7̂j |`) =
exp

(
− 1

2 (7̂j−gj(`))
TC−1

j (7̂j−gj(`))

)
√

(2π)3|Cj |
. (25)

Following from the independence of measurements taken from different anchors, the conditional PDF of

the ranging vector 7̂j can be expressed as

p(7̃|`) =
exp

(
− 1

2

∑M
j=1(7̃j−gj(`))

TC−1
j (7̃j−gj(`))

)
√

(2π)3M
∏M
j=1 |Cj |

. (26)

Accordingly, the elements of the FIM are derived from (26) as follows

[J(`)]1,1 =

M∑
j=1

3kjµ
∂gTj (`)

∂x
C−1
j

∂gj(`)

∂x
, (27)
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Figure 2 RMSE vs. range error

[J(`)]1,2 = [J(`)]2,1 =

M∑
j=1

3kjµ
∂gTj (`)

∂y
C−1
j

∂gj(`)

∂x
, (28)

[J(`)]1,3 = [J(`)]3,1 =

M∑
j=1

3kjµ
∂gTj (`)

∂z
C−1
j

∂gj(`)

∂x
, (29)

[J(`)]2,2 =

M∑
j=1

3kjµ
∂gTj (`)

∂y
C−1
j

∂gj(`)

∂y
, (30)

[J(`)]2,3 = [J(`)]3,2 =

M∑
j=1

3kjµ
∂gTj (`)

∂z
C−1
j

∂gj(`)

∂y
, (31)

[J(`)]3,3 =

M∑
j=1

3kjµ
∂gTj (`)

∂z
C−1
j

∂gj(`)

∂z
, (32)

where
∂gTj (`)

∂x
=

[
x̃j
dj

− ỹj
d2

2,j

x̃j z̃j
d2
jd2,j

]
, (33)

∂gTj (`)

∂y
=

[
ỹj
dj

− x̃j
d2

2,j

ỹj z̃j
d2
jd2,j

]
, (34)

and
∂gTj (`)

∂z
=

[
z̃j
dj

0
d2,j

d2
j

]
. (35)

By substituting the above elements of the FIM in (11) to (13), the CRLB with anchors positions uncer-

tainty can be calculated.

4 Numerical Results

In this section, we perform numerous simulations to validate the performance of the derived analytical

expressions in Section II and III. Fig. 3 shows a setting with 8 anchors nodes and a source node which

need to be localized in 100 m3 cubic region where the blue circles, red square, and green triangle represents

the actual position of anchor nodes, the drifted positions of the anchor nodes, and the actual position
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Figure 3 3D scenario with anchor position uncertainity.
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Figure 4 RMSE versus number of anchors.

of the source node respectively. The purple hexagram and the black pentagram represent the estimated

position of source node based on the actual positions and drifted positions of anchors, respectively. The

standard deviation of the anchor positions error and ranging error is kept to 1.5 m and 1 m, respectively.

Fig. 3 clearly demonstrates that the uncertainty in anchor positions results in low localization accuracy.

The results are averaged out over 1000 Monte Carlo simulations with 8 random anchor nodes and a

source node in 100 m3 cubic region. RMSE ,
√
E(( ˙̀− `)2) is considered as the performance metric.

The operating wavelength of the optical signals is in the blue region with a wavelength of 445 nm, and

the divergence angle is equal to 30 degrees.

To show the effect of underwater optical channel parameters, we have considered two different types

of water in Fig. 2, i.e., pure ocean water and turbid harbor water. It is clear from Fig. 2 that for a given

ranging error variance, the RMSE performance is better in pure ocean water due to low absorption and

scattering loss as compared to the turbid harbor water. Also, Fig. 2 shows that when there is anchor

position uncertainty, the RMSE increases. Note that the range measurements depends on not only the

underwater optical channel impediments but also the distance among the anchor nodes and the source

node by using (14). It is worthy to note here that for the rest of simulations we consider pure ocean

water.
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Figure 5 RMSE versus ranging error variance with uncertainity in anchor positions, i.e., σx̂ = σŷ = σẑ = 1.5 m.

Fig. 4 shows the localization accuracy of the analytical results of CRLB, LLS, and WLLS concerning

the number of anchors. The standard deviations for ToA and AoA measurements are equal to 2 m and

2 degrees, respectively. Fig. 4 depicts that increasing the number of anchors improves the localization

accuracy, and the LLS and WLLS methods achieve the CRLB when the number of anchors is equal to

8. Fig. 4 also shows that the CRLB with APU has a large localization error but is more practical as

compared to the case when there is no uncertainty in anchors positions.

Next, we examine the performance of the LLS and WLLS in comparison with the derived CRLB for

perfect and erroneous anchor positions, respectively. The uncertainty in each coordinate of the anchor

position is modeled as a Gaussian random variable with zero mean and standard deviation of 1.5 meters.

It is clear from Fig. 5 that the WLLS solution achieves the CRLB with error-free anchor positions.

However, in the presence of APUs, both LLS and WLLS have a large localization error. Notice that the

SNR for Fig. 5 is defined as the mean squared distance over the noise variance.

5 Conclusion

In this paper, we have derived a closed-form expression for the lower bound of error variance for 3D

UOWSN localization in the presence of APU. The localization error is analyzed for both cases with and

without APU by using ToA and AoA based ranging. The analytical findings have been validated by the

numerical results where the error in anchor positions yields a low localization accuracy. Therefore, it is

important for any 3D UOWSNs localization technique to account for anchor positions error in addition

to the underwater optical channel parameters and noisy range measurements.
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