Skip to main content
Log in

Mineralogy of Chang’e-4 landing site: preliminary results of visible and near-infrared imaging spectrometer

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The exploration of mafic anomaly in South Pole-Aitken (SPA, the largest confirmed) basin on the Moon provides important insights into lunar interior. The landing of Chang’e-4 (CE-4) and deployment of Yutu-2 rover on the discontinuous ejecta from Finsen crater enabled in-situ measurements of the unusual mineralogy in the central portion of SPA basin with visible and near-infrared imaging spectrometer (VNIS). Here we present detailed processing procedures based on the level 2B data of CE-4 VNIS and preliminary mineralogical results at the exploration area of Yutu-2 rover. A systematic processing pipeline is developed to derive credible reflectance spectra, based on which several spectral and mineral indices are calculated to constrain the mafic mineralogy. The mafic components in the soils and boulder around CE-4 landing site are concluded as clinopyroxene-bearing with intermediate composition and probably dominated by pigeonite although the possibility of mixing orthopyroxen (OPX) and calcic clinopyroxene (CPX) also exists. These mineralogical results are more consistent with a petrogenesis that the CE-4 regolith and rock fragment are derived from rapid-cooling magmatic systems and we interpret that the materials at the CE-4 landing site ejected from Finsen crater are probably recrystallized from impact melt settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Di K, Liu Z, Liu B, et al. Chang’e-4 lander localization based on multi-source data. J Remote Sens, 2019, 23: 177–184

    Google Scholar 

  2. Wu W, Li C, Zuo W, et al. Lunar farside to be explored by Chang’e-4. Nat Geosci, 2019, 12: 222–223

    Article  Google Scholar 

  3. Liu J, Ren X, Yan W, et al. Descent trajectory reconstruction and landing site positioning of Chang’e-4 on the lunar farside. Nat Commun, 2019, 10: 4229

    Article  Google Scholar 

  4. Garrick-Bethell I, Zuber M T. Elliptical structure of the lunar South Pole-Aitken basin. Icarus, 2009, 204: 399–408

    Article  Google Scholar 

  5. Hurwitz D M, Kring D A. Differentiation of the South Pole-Aitken basin impact melt sheet: implications for lunar exploration. J Geophys Res Planets, 2014, 119: 1110–1133

    Article  Google Scholar 

  6. Lucey P G, Taylor G J, Hawke B R, et al. FeO and TiO2 concentrations in the South Pole-Aitken basin: implications for mantle composition and basin formation. J Geophys Res, 1998, 103: 3701–3708

    Article  Google Scholar 

  7. Pieters C M, Tompkins S, Head J W, et al. Mineralogy of the mafic anomaly in the South Pole-Aitken basin: implications for excavation of the lunar mantle. Geophys Res Lett, 1997, 24: 1903–1906

    Article  Google Scholar 

  8. Moriarty Iii D P, Pieters C M. The character of South Pole-Aitken basin: patterns of surface and subsurface composition. J Geophys Res Planets, 2018, 123: 729–747

    Article  Google Scholar 

  9. Pieters C M, Head Iii J W, Gaddis L, et al. Rock types of South Pole-Aitken basin and extent of basaltic volcanism. J Geophys Res, 2001, 106: 28001–28022

    Article  Google Scholar 

  10. Lawrence D J, Feldman W C, Elphic R C, et al. Iron abundances on the lunar surface as measured by the lunar prospector Gamma-ray and neutron spectrometers. J Geophys Res Planets, 2002, 107: 5130

    Article  Google Scholar 

  11. Prettyman T H, Hagerty J J, Elphic R C, et al. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. J Geophys Res, 2006, 111: E12007

    Google Scholar 

  12. Lawrence D J, Feldman W C, Barraclough B L, et al. Thorium abundances on the lunar surface. J Geophys Res, 2000, 105: 20307–20331

    Article  Google Scholar 

  13. Kobayashi S, Karouji Y, Morota T, et al. Lunar farside Th distribution measured by Kaguya gamma-ray spectrometer. Earth Planet Sci Lett, 2012, 337–338: 10–16

    Article  Google Scholar 

  14. Jolliff B L, Wieczorek M A, Shearer C K, et al. New Views of the Moon. Gottingan: Mineralogical Society of America, 2018. 60

    Google Scholar 

  15. Fu X H, Qiao L, Zhang J, et al. The subsurface structure and stratigraphy of the Chang’e-4 landing site: orbital evidence from small craters on the Von Kármán crater floor. Res Astron Astrophys, 2020, 20: 008

    Article  Google Scholar 

  16. Gou S, Di K, Yue Z, et al. Lunar deep materials observed by Chang’e-4 rover. Earth Planet Sci Lett, 2019, 528: 115829

    Article  Google Scholar 

  17. Huang J, Xiao Z, Flahaut J, et al. Geological characteristics of Von Kármán crater, northwestern South Pole-Aitken basin: Chang’e-4 landing site region. J Geophys Res Planets, 2018, 123: 1684–1700

    Article  Google Scholar 

  18. Li C, Liu D, Liu B, et al. Chang’e-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature, 2019, 569: 378–382

    Article  Google Scholar 

  19. Ling Z, Jolliff B L, Liu C, et al. Composition, mineralogy, and chronology of mare basalts in Von Kármán crater: a candidate landing site of Chang’e-4. In: Proceedings of the 49th Lunar and Planetary Science Conference, Houston, 2018. 1939

  20. Ling Z, Jolliff B L, Liu C, et al. A close view of Chang’e-4 landing site and science questions to be answered by Yutu-2. In: Proceedings of the 50th Lunar and Planetary Science Conference, Houston, 2019. 2330

  21. Ling Z, Qiao L, Liu C, et al. Composition, mineralogy and chronology of mare basalts and non-mare materials in Von Kármán crater: landing site of the Chang’e-4 mission. Planet Space Sci, 2019, 179: 104741

    Article  Google Scholar 

  22. Qiao L, Ling Z, Fu X, et al. Geological characterization of the Chang’e-4 landing area on the lunar farside. Icarus, 2019, 333: 37–51

    Article  Google Scholar 

  23. He Z, Xu R, Li C, et al. Visible and near-infrared imaging spectrometer (VNIS) for in-situ lunar surface measurements. In: Proceedings of Sensors, Systems, and Next-Generation Satellites XIX, 2015. 9639

  24. Liu B, Li C L, Zhang G L, et al. Data processing and preliminary results of the Chang’e-3 VIS/NIR imaging spectrometer in-situ analysis. Res Astron Astrophys, 2014, 14: 1578–1594

    Article  Google Scholar 

  25. Gueymard C A. The Sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol Energy, 2004, 76: 423–453

    Article  Google Scholar 

  26. Li C, Wang Z, Xu R, et al. The scientific information model of Chang’e-4 visible and near-IR imaging spectrometer (VNIS) and in-flight verification. Sensors, 2019, 19: 2806

    Article  Google Scholar 

  27. Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem, 1964, 36: 1627–1639

    Article  Google Scholar 

  28. Hapke B. Space weathering from Mercury to the asteroid belt. J Geophys Res, 2001, 106: 10039–10073

    Article  Google Scholar 

  29. Pieters C M, Taylor L A, Noble S K, et al. Space weathering on airless bodies: resolving a mystery with lunar samples. Meteoritics Planet Sci, 2000, 35: 1101–1107

    Article  Google Scholar 

  30. Clark R N, Roush T L. Reflectance spectroscopy: quantitative analysis techniques for remotesensing applications. J Geophys Res, 1984, 89: 6329–6340

    Article  Google Scholar 

  31. Clark R N, Swayze G A, Livo K E, et al. Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems. J Geophys Res, 2003, 108: 5131

    Google Scholar 

  32. McCord T B, Clark R N, Hawke B R, et al. Moon: near-infrared spectral reflectance, a first good look. J Geophys Res, 1981, 86: 10883–10892

    Article  Google Scholar 

  33. Sunshine J M, Pieters C M, Pratt S F. Deconvolution of mineral absorption bands: an improved approach. J Geophys Res, 1990, 95: 6955–6966

    Article  Google Scholar 

  34. Kaur P, Bhattacharya S, Chauhan P, et al. Mineralogy of Mare Serenitatis on the near side of the Moon based on Chandrayaan-1 Moon Mineralogy Mapper (M3) observations. Icarus, 2013, 222: 137–148

    Article  Google Scholar 

  35. Wu Y, Li L, Luo X, et al. Geology, tectonism and composition of the northwest Imbrium region. Icarus, 2018, 303: 67–90

    Article  Google Scholar 

  36. Zhang X Y, Ouyang Z Y, Zhang X M, et al. Study of the continuum removal method for the Moon Mineralogy Mapper (M3) and its application to Mare Humorum and Mare Nubium. Res Astron Astrophys, 2016, 16: 115

    Article  Google Scholar 

  37. Besse S, Sunshine J M, Staid M I, et al. Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M3). J Geophys Res, 2011, 116: 13

    Google Scholar 

  38. Cheek L C, Donaldson Hanna K L, Pieters C M, et al. The distribution and purity of anorthosite across the Orientale basin: new perspectives from Moon Mineralogy Mapper data. J Geophys Res Planets, 2013, 118: 1805–1820

    Article  Google Scholar 

  39. Horgan B H N, Cloutis E A, Mann P, et al. Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra. Icarus, 2014, 234: 132–154

    Article  Google Scholar 

  40. Pelkey S M, Mustard J F, Murchie S, et al. CRISM multispectral summary products: parameterizing mineral diversity on Mars from reflectance. J Geophys Res, 2007, 112: 14

    Google Scholar 

  41. Salvatore M R, Mustard J F, Wyatt M B, et al. Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae. J Geophys Res, 2010, 115: E07005

    Google Scholar 

  42. Cloutis E A, Gaffey M J. Pyroxene spectroscopy revisited-spectral-compositional correlations and relationship to geothermometry. J Geophys Res, 1991, 96: 22809–22826

    Article  Google Scholar 

  43. Gaffey M J, Bell J F, Brown R H, et al. Mineralogical variations within the S-type asteroid class. Icarus, 1993, 106: 573–602

    Article  Google Scholar 

  44. Varatharajan I, Srivastava N, Murty S V S. Mineralogy of young lunar mare basalts: assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1. Icarus, 2014, 236: 56–71

    Article  Google Scholar 

  45. Pieters C M, Englert P A J. Remote Geochemical Analysis, Elemental and Mineralogical Composition. Cambridge: Cambridge University Press, 1993

    Google Scholar 

  46. Adams J B, Goullaud L H. Plagioclase feldspars-visible and near infrared diffuse reflectance spectra as applied to remote sensing. In: Proceedings of the 9th Lunar and Planetary Science Conference, 1978. 2901–2909

  47. Donaldson Hanna K L, Cheek L C, Pieters C M, et al. Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust. J Geophys Res Planets, 2014, 119: 1516–1545

    Article  Google Scholar 

  48. Ohtake M, Matsunaga T, Haruyama J, et al. The global distribution of pure anorthosite on the Moon. Nature, 2009, 461: 236–240

    Article  Google Scholar 

  49. Tompkins S, Pieters C M. Spectral characteristics of lunar impact melts and inferred mineralogy. Meteoritics Planet Sci, 2010, 45: 1152–1169

    Article  Google Scholar 

  50. Adams J B, Horz F, Gibbons R V. Effects of shock-loading on the reflectance spectra of plagioclase, pyroxene, and glass. In: Proceedings of the 10th Lunar and Planetary Science Conference, 1979. 1–3

  51. Johnson J R, Hörz F. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars. J Geophys Res, 2003, 108: 5120

    Article  Google Scholar 

  52. Crown D A, Pieters C M. Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra. Icarus, 1987, 72: 492–506

    Article  Google Scholar 

  53. Klima R L, Pieters C M, Dyar M D. Spectroscopy of synthetic Mg-Fe pyroxenes I: spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared. Meteoritics Planet Sci, 2007, 42: 235–253

    Article  Google Scholar 

  54. Klima R L, Pieters C M, Dyar M D. Characterization of the 1.2 µm M1 pyroxene band: extracting cooling history from near-IR spectra of pyroxenes and pyroxene-dominated rocks. Meteoritics Planet Sci, 2008, 43: 1591–1604

    Article  Google Scholar 

  55. Gross J, Treiman A H, Mercer C N. Lunar feldspathic meteorites: constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth Planet Sci Lett, 2014, 388: 318–328

    Article  Google Scholar 

  56. Shearer C K, Elardo S M, Petro N E, et al. Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am Miner, 2015, 100: 294–325

    Article  Google Scholar 

  57. Shearer C K, Hess P C, Wieczorek M A, et al. Thermal and magmatic evolution of the Moon. Rev Mineral GeoChem, 2006, 60: 365–518

    Article  Google Scholar 

  58. Lemelin M, Lucey P G, Gaddis L R, et al. Global map products from the Kaguya multiband imager at 512 ppd: Minerals, FeO, and OMAT. In: Proceedings of the 47th Lunar and Planetary Science Conference, 2016. 2994

  59. Lucey P G. Mineral maps of the Moon. Geophys Res Lett, 2004, 31: L08701

    Article  Google Scholar 

  60. Bickel C E, Warner J L, Phinney W C. Petrology of 79215-Brecciation of a lunar cumulate. In: Proceedings of Lunar and Planetary Science Conference, 1976. 7: 1793–1819

    Google Scholar 

  61. Dymek R F, Albee A L, Chodos A A. Comparative petrology of lunar cumulate rocks of possible primary origin-Dunite 72415, troctolite 76535, norite 78235, and anorthosite 62237. In: Proceedings of Lunar and Planetary Science Conference, 1975. 6: 301–341

    Google Scholar 

  62. Takeda H, Miyamoto M. Inverted pigeonites from lunar breccia 76255 and pyroxene-crystallization trends in lunar and achondritic crusts. In: Proceedings of Lunar and Planetary Science Conference, 1977. 8: 2617–2626

    Google Scholar 

  63. Warner J L, Simonds C H, Phinney W C. Apollo 17, Station 6 boulder sample 76255-Absolute petrology of breccia matrix and igneous clasts. In: Proceedings of Lunar and Planetary Science Conference, 1976. 7: 2233–2250

    Google Scholar 

  64. Nakamura Y, Kushiro I. Equilibrium relations of hypersthene, pigeonite and augite in crystallizing magmas: microprobe study of a pigeonite andesite from Weiselberg, Germany. American Mineralogist, 1970, 55: 1999–2015

    Google Scholar 

  65. Hawke B R, Blewett D T, Lucey P G, et al. The origin of lunar crater rays. Icarus, 2004, 170: 1–16

    Article  Google Scholar 

  66. Wilhelms D E, John F, Trask N J. The Geologic History of the Moon. United States Geological Survey, 1987

  67. Morrison D A. Did a thick South Pole-Aitken basin melt sheet differentiate to form cumulates? In: Proceedings of the 29th Lunar and Planetary Science Conference, 1998. 1657

  68. Vaughan W M, Head J W, Wilson L, et al. Geology and petrology of enormous volumes of impact melt on the Moon: a case study of the Orientale basin impact melt sea. Icarus, 2013, 223: 749–765

    Article  Google Scholar 

  69. Vaughan W M, Head J W. Impact melt differentiation in the South Pole-Aitken basin: Some observations and speculations. Planet Space Sci, 2014, 91: 101–106

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11941001, 41972322, U1931211), Natural Science Foundation of Shandong Province (Grant No. ZR2019MD008), Qilu Young Scholar (TANG SCHOLAR) Program of Shandong University, Weihai (Grant No. 2015WHWLJH14), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC028), and Pre-research Project on Civil Aerospace Technologies Funded by China National Space Administration (CNSA) (Grant No. D020102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongcheng Ling.

Supplementary File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ling, Z., Qiao, L. et al. Mineralogy of Chang’e-4 landing site: preliminary results of visible and near-infrared imaging spectrometer. Sci. China Inf. Sci. 63, 140903 (2020). https://doi.org/10.1007/s11432-019-2768-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2768-1

Keywords

Navigation