Skip to main content
Log in

Reconfigurable vertical field-effect transistor based on graphene/MoTe2/graphite heterostructure

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Reconfigurable field-effect transistors have attracted enormous attention over the past decades because of their potential in implementing logic and analog circuit functions with fewer resources of transistors compared with complementary metal-oxide-semiconductor transistors. However, the miniaturization of traditional reconfigurable transistors is still a challenge owing to their inherent planar multi-gate structure. Herein, we fabricated a dual-gate vertical transistor based on graphene/MoTe2/graphite van der Waals heterostructure and demonstrated a switchable n-type, V-shape ambipolar and p-type field-effect characteristics by varying the voltages of the top gate and drain electrodes. According to the band diagram analysis, we reveal that the reconfiguring ability of the field-effect characteristics stems from the asymmetric injection efficiency of the carriers through the gate-tunable barriers at the interfaces. Our results offer a potential approach to achieve device miniaturization of reconfigurable transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang X B, Liu G X, Balandin A A, et al. Triple-mode single-transistor graphene amplifier and its applications. ACS Nano, 2010, 4: 5532–5538

    Google Scholar 

  2. Moon J S, Curtis D, Zehnder D, et al. Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Dev Lett, 2011, 32: 270–272

    Google Scholar 

  3. Jariwala D, Sangwan V K, Seo J W T, et al. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. Nano Lett, 2015, 15: 416–421

    Google Scholar 

  4. Wang Z X, Ding L, Pei T, et al. Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler. Nano Lett, 2010, 10: 3648–3655

    Google Scholar 

  5. Wang H, Hsu A, Wu J, et al. Graphene-based ambipolar RF mixers. IEEE Electron Dev Lett, 2010, 31: 906–908

    Google Scholar 

  6. Han S J, Garcia A V, Oida S, et al. Graphene radio frequency receiver integrated circuit. Nat Commun, 2014, 5: 3086

    Google Scholar 

  7. Wang H, Nezich D, Kong J, et al. Graphene frequency multipliers. IEEE Electron Dev Lett, 2009, 30: 547–549

    Google Scholar 

  8. Guerriero E, Polloni L, Rizzi L G, et al. Graphene audio voltage amplifier. Small, 2012, 8: 357–361

    Google Scholar 

  9. Yang X B, Liu G X, Rostami M, et al. Graphene ambipolar multiplier phase detector. IEEE Electron Dev Lett, 2011, 32: 1328–1330

    Google Scholar 

  10. Zhu W N, Yogeesh M N, Yang S X, et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett, 2015, 15: 1883–1890

    Google Scholar 

  11. Lee S, Lee K, Liu C H, et al. Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat Commun, 2012, 3: 1018

    Google Scholar 

  12. Palacios T, Hsu A, Wang H. Applications of graphene devices in RF communications. IEEE Commun Mag, 2010, 48: 122–128

    Google Scholar 

  13. Wang Z X, Zhang Z Y, Xu H L, et al. A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett, 2010, 96: 173104

    Google Scholar 

  14. de Marchi M, Sacchetto D, Frache S, et al. Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire fets. In: Proceedings of International Electron Devices Meeting, 2012

  15. Yoo H, Smits E C P, van Breemen A J, et al. Asymmetric split-gate ambipolar transistor and its circuit application to complementary inverter. Adv Mater Technol, 2016, 1: 1600044

    Google Scholar 

  16. Zhang J, de Marchi M, Sacchetto D, et al. Polarity-controllable silicon nanowire transistors with dual threshold voltages. IEEE Trans Electron Dev, 2014, 61: 3654–3660

    Google Scholar 

  17. Heinzig A, Mikolajick T, Trommer J, et al. Dually active silicon nanowire transistors and circuits with equal electron and hole transport. Nano Lett, 2013, 13: 4176–4181

    Google Scholar 

  18. Heinzig A, Slesazeck S, Kreupl F, et al. Reconfigurable silicon nanowire transistors. Nano Lett, 2012, 12: 119–124

    Google Scholar 

  19. Zhao Y J, Candebat D, Delker C, et al. Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. Nano Lett, 2012, 12: 5331–5336

    Google Scholar 

  20. Resta G V, Balaji Y, Lin D, et al. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano, 2018, 12: 7039–7047

    Google Scholar 

  21. Pang C, Thakuria N, Gupta S K, et al. First demonstration of Wse2 based CMOS-SRAM. In: Proceedings of International Electron Devices Meeting (IEDM), 2018

  22. Pang C S, Chen Z H. First demonstration of WSe2 CMOS inverter with modulable noise margin by electrostatic doping. In: Proceedings of the 76th Device Research Conference (DRC), 2018

  23. Liu Y, Zhang G, Zhou H L, et al. Ambipolar barristors for reconfigurable logic circuits. Nano Lett, 2017, 17: 1448–1454

    Google Scholar 

  24. Larentis S, Fallahazad B, Movva H C P, et al. Reconfigurable complementary monolayer MoTe2 field-effect transistors for integrated circuits. ACS Nano, 2017, 11: 4832–4839

    Google Scholar 

  25. Mongillo M, Spathis P, Katsaros G, et al. Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett, 2012, 12: 3074–3079

    Google Scholar 

  26. Trommer J, Heinzig A, Slesazeck S, et al. Elementary aspects for circuit implementation of reconfigurable nanowire transistors. IEEE Electron Dev Lett, 2014, 35: 141–143

    Google Scholar 

  27. Gaillardon P E, Tang X F, Kim G, et al. A novel FPGA architecture based on ultrafine grain reconfigurable logic cells. IEEE Trans VLSI Syst, 2015, 23: 2187–2197

    Google Scholar 

  28. Ben-Jamaa M H, Mohanram K, de Micheli G. An efficient gate library for ambipolar CNTFET logic. IEEE Trans Comput-Aided Des Integr Circ Syst, 2011, 30: 242–255

    Google Scholar 

  29. Mikolajick T, Heinzig A, Trommer J, et al. The RFET-a reconfigurable nanowire transistor and its application to novel electronic circuits and systems. Semicond Sci Technol, 2017, 32: 043001

    Google Scholar 

  30. Trommer J, Heinzig A, Heinrich A, et al. Material prospects of reconfigurable transistor (RFETs) — from silicon to germanium nanowires. MRS Proc, 2014, 1659: 225–230

    Google Scholar 

  31. Weber W M, Heinzig A, Trommer J, et al. Reconfigurable nanowire electronics — a review. Solid-State Electron, 2014, 102: 12–24

    Google Scholar 

  32. Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotech, 2013, 8: 100–103

    Google Scholar 

  33. Liu Y, Weiss N O, Duan X D, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042

    Google Scholar 

  34. Kang J, Jariwala D, Ryder C R, et al. Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano Lett, 2016, 16: 2580–2585

    Google Scholar 

  35. Yu W J, Li Z, Zhou H L, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12: 246–252

    Google Scholar 

  36. Choi Y, Kang J, Jariwala D, et al. Low-voltage complementary electronics from ion-gel-gated vertical van der Waals heterostructures. Adv Mater, 2016, 28: 3742–3748

    Google Scholar 

  37. Moriya R, Yamaguchi T, Inoue Y, et al. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Appl Phys Lett, 2014, 105: 083119

    Google Scholar 

  38. Moriya R, Yamaguchi T, Inoue Y, et al. Influence of the density of states of graphene on the transport properties of graphene/MoS2/metal vertical field-effect transistors. Appl Phys Lett, 2015, 106: 223103

    Google Scholar 

  39. Shim J, Kim H S, Shim Y S, et al. Extremely large gate modulation in vertical graphene/WSe2 heterojunction barristor based on a novel transport mechanism. Adv Mater, 2016, 28: 5293–5299

    Google Scholar 

  40. Sata Y, Moriya R, Morikawa S, et al. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface. Appl Phys Lett, 2015, 107: 023109

    Google Scholar 

  41. Lin Y F, Li W W, Li S L, et al. Barrier inhomogeneities at vertically stacked graphene-based heterostructures. Nanoscale, 2014, 6: 795–799

    Google Scholar 

  42. Liu Y, Zhou H L, Cheng R, et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 2014, 14: 1413–1418

    Google Scholar 

  43. Parui S, Pietrobon L, Ciudad D, et al. Gate-controlled energy barrier at a graphene/molecular semiconductor junction. Adv Funct Mater, 2015, 25: 2972–2979

    Google Scholar 

  44. Liu J Y, Zhou K, Liu J, et al. Organic-single-crystal vertical field-effect transistors and phototransistors. Adv Mater, 2018, 30: 1803655

    Google Scholar 

  45. Liu Y, Guo J, Zhu E B, et al. Maximizing the current output in self-aligned graphene-InAs-metal vertical transistors. ACS Nano, 2019, 13: 847–854

    Google Scholar 

  46. Liu J Y, Qin Z S, Gao H K, et al. Vertical organic field-effect transistors. Adv Funct Mater, 2019, 29: 1808453

    Google Scholar 

  47. Pan C, Fu Y J, Wang J X, et al. Analog circuit applications based on ambipolar graphene/MoTe2 vertical transistors. Adv Electron Mater, 2018, 4: 1700662

    Google Scholar 

  48. Liang S J, Cheng B, Cui X, et al. Van der Waals heterostructures for high-performance device applications: challenges and opportunities. Adv Mater, 2019, 306: 1903800

    Google Scholar 

  49. Hui F. Chemical vapor deposition of hexagonal boron nitride and its use in electronic devices. 2018. ArXiv:1905.06938

  50. Fathipour S, Ma N, Hwang W S, et al. Exfoliated multilayer MoTe2 field-effect transistors. Appl Phys Lett, 2014, 105: 192101

    Google Scholar 

  51. Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006, 97: 187401

    Google Scholar 

  52. Zhou C J, Zhao Y D, Raju S, et al. Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping. Adv Funct Mater, 2016, 26: 4223–4230

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Basic Research Program of China (Grant No. 2015CB921600), National Natural Science Foundation of China (Grant Nos. 61974176, 61574076, 61921005), Natural Science Foundation of Jiangsu Province (Grant Nos. BK20180330, BK20150055), and Fundamental Research Funds for the Central Universities (Grant Nos. 020414380122, 020414380084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Cheng or Feng Miao.

Supplementary File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Pan, C., Liang, SJ. et al. Reconfigurable vertical field-effect transistor based on graphene/MoTe2/graphite heterostructure. Sci. China Inf. Sci. 63, 202402 (2020). https://doi.org/10.1007/s11432-019-2778-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2778-8

Keywords

Navigation