Skip to main content
Log in

Proton magnetic resonance spectroscopy in substance use disorder: recent advances and future clinical applications

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Proton magnetic resonance spectroscopy (1H-MRS) now is widely used in clinical researches for the measurement of compounds or metabolites in vivo, especially in neuropsychiatric diseases/disorders. Recently, there are many studies on substance use disorders utilizing 1H-MRS to explore the mechanism of brain metabolites. It is found that metabolites levels in substance users are changed compared with healthy controls. Furthermore, these changes also relate to behavior indices, and provide evidence for the impact on neuronal health, energy metabolism and membrane turnover. However, 1H-MRS is not yet a mature detection technology, and it still has many challenges in the application of the neuropsychiatric disorder area. The settings of test parameters and the inconsistency of results across different studies still plague the clinicians and technicians. This article is intended to provide an overview of basic theory and methods of 1H-MRS, and the literature reporting metabolites alterations in substance dependence, as well as the related neuropsychological performance. At last, we will discuss the forthcoming challenges and possible future direction in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertholdo D, Watcharakorn A, Castillo M. Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimag Clinics North Am, 2013, 23: 359–380

    Article  Google Scholar 

  2. Karl A, Werner A. The use of proton magnetic resonance spectroscopy in PTSD research-meta-analyses of findings and methodological review. Neurosci Biobehavioral Rev, 2010, 34: 7–22

    Article  Google Scholar 

  3. Lee R S C, Hoppenbrouwers S, Franken I. A systematic meta-review of impulsivity and compulsivity in addictive behaviors. Neuropsychol Rev, 2019, 29: 14–26

    Article  Google Scholar 

  4. Zou Z, Wang H, d’Oleire Uquillas F, et al. Definition of substance and non-substance addiction. Adv Exp Med Biol, 2017, 1010: 21–41

    Article  Google Scholar 

  5. Degenhardt L, Bharat C, Glantz M D, et al. The epidemiology of drug use disorders cross-nationally: findings from the WHO’s World Mental Health Surveys. Int J Drug Policy, 2019, 71: 103–112

    Article  Google Scholar 

  6. United Nations Office on Drugs and Crime. World Drug Report 2018 by United Nations Office on Drugs and Crime. New York: United Nations, 2018. https://www.unodc.org/wdr2018/

    Book  Google Scholar 

  7. Koob G F, Volkow N D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry, 2016, 3: 760–773

    Article  Google Scholar 

  8. Hellem T, Shi X, Latendresse G, et al. The utility of magnetic resonance spectroscopy for understanding substance use disorders: a systematic review of the literature. J Am Psychiatr Nurses Assoc, 2015, 21: 244–275

    Article  Google Scholar 

  9. Ernst R R, Bodenhausen G, Wokaun A, et al. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Oxford University Press, 1987

    Google Scholar 

  10. Williams S. In Vivo NMR Spectroscopy: Principles and Techniques. Chichester: Wiley, 1998, 35: 201

    Google Scholar 

  11. Ende G. Proton magnetic resonance spectroscopy: relevance of glutamate and GABA to neuropsychology. Neuropsychol Rev, 2015, 25: 315–325

    Article  Google Scholar 

  12. Bottomley P. 4480228 selective volume method for performing localized NMR spectroscopy. Magnetic Resonance Imag, 1985, 3: iv–v

    Article  Google Scholar 

  13. Frahm J, Bruhn H, Gyngell M L, et al. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med, 1989, 9: 79–93

    Article  Google Scholar 

  14. Tamiya T, Kinoshita K, Ono Y, et al. Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology, 2000, 42: 333–338

    Article  Google Scholar 

  15. Hammen T, Stefan H, Eberhardt K E, et al. Clinical applications of 1H-MR spectroscopy in the evaluation of epilepsies-what do pathological spectra stand for with regard to current results and what answers do they give to common clinical questions concerning the treatment of epilepsies? Acta Neurol Scand, 2003, 108: 223–238

    Article  Google Scholar 

  16. Szulc A, Galińska B, Tarasów E, et al. N-acetylaspartate (NAA) levels in selected areas of the brain in patients with chronic schizophrenia treated with typical and atypical neuroleptics: a proton magnetic resonance spectroscopy (1H MRS) study. Medical Sci Monitor, 2007, 13: 17–22

    Google Scholar 

  17. Gruber S, Frey R, Mlynárik V, et al. Quantification of metabolic differences in the frontal brain of depressive patients and controls obtained by 1H-MRS at 3 Tesla. Invest Radiol, 2003, 38: 403–408

    Google Scholar 

  18. Frischknecht U, Hermann D, Tunc-Skarka N, et al. Negative association between MR-spectroscopic glutamate markers and gray matter volume after alcohol withdrawal in the hippocampus: a translational study in humans and rats. Alcohol Clin Exp Res, 2017, 41: 323–333

    Article  Google Scholar 

  19. Burger A, Brooks S J, Stein D J, et al. The impact of acute and short-term methamphetamine abstinence on brain metabolites: a proton magnetic resonance spectroscopy chemical shift imaging study. Drug Alcohol Dependence, 2018, 185: 226–237

    Article  Google Scholar 

  20. Yeo R A, Thoma R J, Gasparovic C, et al. Neurometabolite concentration and clinical features of chronic alcohol use: a proton magnetic resonance spectroscopy study. Psychiatry Res-Neuroimag, 2013, 211: 141–147

    Article  Google Scholar 

  21. Crocker C E, Purdon S E, Hanstock C C, et al. Enduring changes in brain metabolites and executive functioning in abstinent cocaine users. Drug Alcohol Dependence, 2017, 178: 435–442

    Article  Google Scholar 

  22. Howells F M, Uhlmann A, Temmingh H, et al. (1)H-magnetic resonance spectroscopy ((1)H-MRS) in methamphetamine dependence and methamphetamine induced psychosis. Schizophrenia Res, 2014, 153: 122–128

    Article  Google Scholar 

  23. Licata S C, Renshaw P F. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann New York Acad Sci, 2010, 1187: 148–171

    Article  Google Scholar 

  24. Hermann D, Weber-Fahr W, Sartorius A, et al. Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats. Biol Psychiatry, 2012, 71: 1015–1021

    Article  Google Scholar 

  25. Yang S, Salmeron B J, Ross T J, et al. Lower glutamate levels in rostral anterior cingulate of chronic cocaine users—a (1)H-MRS study using TE-averaged PRESS at 3 T with an optimized quantification strategy. Psychiatry Res, 2009, 174: 171–176

    Article  Google Scholar 

  26. Prisciandaro J J, Tolliver B K, Prescot A P, et al. Unique prefrontal GABA and glutamate disturbances in co-occurring bipolar disorder and alcohol dependence. Transl Psychiatry, 2017, 7: e1163

    Article  Google Scholar 

  27. Silveri M M, Cohen-Gilbert J, Crowley D J, et al. Altered anterior cingulate neurochemistry in emerging adult binge drinkers with a history of alcohol-induced blackouts. Alcohol Clin Exp Res, 2014, 38: 969–979

    Article  Google Scholar 

  28. Bagga D, Khushu S, Modi S, et al. Impaired visual information processing in alcohol-dependent subjects: a proton magnetic resonance spectroscopy study of the primary visual cortex. J Stud Alcohol Drugs, 2014, 75: 817–826

    Article  Google Scholar 

  29. Jiang L, Gulanski B I, de Feyter H M, et al. Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest, 2013, 123: 1605–1614

    Article  Google Scholar 

  30. Ende G, Hermann D, Demirakca T, et al. Loss of control of alcohol use and severity of alcohol dependence in nontreatment-seeking heavy drinkers are related to lower glutamate in frontal white matter. Alcohol Clin Exp Res, 2013, 37: 1643–1649

    Google Scholar 

  31. Abé C, Mon A, Hoefer M E, et al. Metabolic abnormalities in lobar and subcortical brain regions of abstinent polysubstance users: magnetic resonance spectroscopic imaging. Alcohol Alcoholism, 2013, 48: 543–551

    Article  Google Scholar 

  32. Abé C, Mon A, Durazzo T C, et al. Polysubstance and alcohol dependence: unique abnormalities of magnetic resonance-derived brain metabolite levels. Drug Alcohol Dependence, 2013, 130: 30–37

    Article  Google Scholar 

  33. Xia Y, Ma D, Hu J, et al. Effect of metabotropic glutamate receptor 3 genotype on N-acetylaspartate levels and neurocognition in non-smoking, active alcoholics. Behav Brain Funct, 2012, 8: 42

    Article  Google Scholar 

  34. Mon A, Durazzo T C, Meyerhoff D J. Glutamate, GABA, and other cortical metabolite concentrations during early abstinence from alcohol and their associations with neurocognitive changes. Drug Alcohol Dependence, 2012, 125: 27–36

    Article  Google Scholar 

  35. Thoma R, Mullins P, Ruhl D, et al. Perturbation of the glutamate-glutamine system in alcohol dependence and remission. Neuropsychopharmacol, 2011, 36: 1359–1365

    Article  Google Scholar 

  36. Modi S, Bhattacharya M, Kumar P, et al. Brain metabolite changes in alcoholism: localized proton magnetic resonance spectroscopy study of the occipital lobe. Eur J Rad, 2011, 79: 96–100

    Article  Google Scholar 

  37. Gazdzinski S, Durazzo T C, Mon A, et al. Cerebral white matter recovery in abstinent alcoholics-a multimodality magnetic resonance study. Brain, 2010, 133: 1043–1053

    Article  Google Scholar 

  38. Schuff N, Neylan T C, Fox-Bosetti S, et al. Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. Psychiatry Res-Neuroimag, 2008, 162: 147–157

    Article  Google Scholar 

  39. Gazdzinski S, Durazzo T C, Yeh P H, et al. Chronic cigarette smoking modulates injury and short-term recovery of the medial temporal lobe in alcoholics. Psychiatry Res-Neuroimag, 2008, 162: 133–145

    Article  Google Scholar 

  40. Lee E, Jang D P, Kim J J, et al. Alteration of brain metabolites in young alcoholics without structural changes. Neuroreport, 2007, 18: 1511–1514

    Article  Google Scholar 

  41. Ende G, Walter S, Welzel H, et al. Alcohol consumption significantly influences the MR signal of frontal cholinecontaining compounds. Neuroimage, 2006, 32: 740–746

    Article  Google Scholar 

  42. Durazzo T C, Gazdzinski S, Banys P, et al. Cigarette smoking exacerbates chronic alcohol-induced brain damage: a preliminary metabolite imaging study. Alcoholism-Clin Exp Res, 2004, 28: 1849–1860

    Article  Google Scholar 

  43. Schweinsburg B C, Alhassoon O M, Taylor M J, et al. Effects of alcoholism and gender on brain metabolism. Am J Psychiatry, 2003, 160: 1180–1183

    Article  Google Scholar 

  44. Parks M H, Dawant B M, Riddle W R, et al. Longitudinal brain metabolic characterization of chronic alcoholics with proton magnetic resonance spectroscopy. Alcoholism Clin Exp Res, 2002, 26: 1368–1380

    Article  Google Scholar 

  45. Schweinsburg B C, Taylor M J, Alhassoon O M, et al. Chemical pathology in brain white matter of recently detoxified alcoholics: a 1H magnetic resonance spectroscopy investigation of alcohol-associated frontal lobe injury. Alcoholism Clin Exp Res, 2001, 25: 924–934

    Article  Google Scholar 

  46. Estilaei M R, Matson G B, Payne G S, et al. Effects of chronic alcohol consumption on the broad phospholipid signal in human brain: an in vivo 31P MRS study. Alcoholism Clin Exp Res, 2001, 25: 89–97

    Article  Google Scholar 

  47. Estilaei M R, Matson G B, Payne G S, et al. Effects of abstinence from alcohol on the broad phospholipid signal in human brain: an in vivo 31P magnetic resonance spectroscopy study. Alcoholism Clin Exp Res, 2001, 25: 1213–1220

    Article  Google Scholar 

  48. Bendszus M, Weijers H G, Wiesbeck G, et al. Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. Am J Neuroradiol, 2001, 22: 1926–1932

    Google Scholar 

  49. Schweinsburg B C, Taylor M J, Videen J S, et al. Elevated myo-inositol in gray matter of recently detoxified but not long-term abstinent alcoholics: a preliminary MR spectroscopy study. Alcoholism Clin Exp Res, 2000, 24: 699–705

    Article  Google Scholar 

  50. Seitz D, Widmann U, Seeger U, et al. Localized proton magnetic resonance spectroscopy of the cerebellum in detoxifying alcoholics. Alcoholism Clin Exp Res, 1999, 23: 158–163

    Article  Google Scholar 

  51. Jagannathan N R, Desai N G, Raghunathan P. Brain metabolite changes in alcoholism: An in vivo proton magnetic resonance spectroscopy (MRS) study. Magn Reson Imag, 1996, 14: 553–557

    Article  Google Scholar 

  52. Meyerhoff D J, MacKay S, Sappey-Marinier D, et al. Effects of chronic alcohol abuse and HIV infection on brain phosphorus metabolites. Alcoholism Clin Exp Res, 1995, 19: 685–692

    Article  Google Scholar 

  53. Martin P R, Gibbs S J, Nimmerrichter A A, et al. Brain proton magnetic resonance spectroscopy studies in recently abstinent alcoholics. Alcoholism Clin Exp Res, 1995, 19: 1078–1082

    Article  Google Scholar 

  54. Bartsch A J, Homola G, Biller A, et al. Manifestations of early brain recovery associated with abstinence from alcoholism. Brain, 2007, 130: 36–47

    Article  Google Scholar 

  55. Bauer J, Pedersen A, Scherbaum N, et al. Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacol, 2013, 38: 1401–1408

    Article  Google Scholar 

  56. Ende G, Welzel H, Walter S, et al. Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study. Biol Psychiatry, 2005, 58: 974–980

    Article  Google Scholar 

  57. Frye M A, Hinton D J, Karpyak V M, et al. Anterior cingulate glutamate is reduced by acamprosate treatment in patients with alcohol dependence. J Clin PsychoPharmacol, 2016, 36: 669–674

    Article  Google Scholar 

  58. Schulte M, Goudriaan A E, Kaag A M, et al. The effect of N-acetylcysteine on brain glutamate and gamma-aminobutyric acid concentrations and on smoking cessation: a randomized, double-blind, placebo-controlled trial. J Psychopharmacol, 2017, 31: 1377–1379

    Article  Google Scholar 

  59. Schulte M H J, Kaag A M, Wiers R W, et al. Prefrontal Glx and GABA concentrations and impulsivity in cigarette smokers and smoking polysubstance users. Drug Alcohol Dependence, 2017, 179: 117–123

    Article  Google Scholar 

  60. Gallinat J, Schubert F. Regional cerebral glutamate concentrations and chronic tobacco consumption. Pharmacopsychiatry, 2007, 40: 64–67

    Article  Google Scholar 

  61. Mennecke A, Gossler A, Hammen T, et al. Physiological effects of cigarette smoking in the limbic system revealed by 3 tesla magnetic resonance spectroscopy. J Neural Transm, 2014, 121: 1211–1219

    Article  Google Scholar 

  62. O’Neill J, Tobias M C, Hudkins M, et al. Glutamatergic neurometabolites during early abstinence from chronic methamphetamine abuse. Int J Neuropsychopharmacol, 2014, 18: pyu059

    Article  Google Scholar 

  63. Crocker C E, Bernier D C, Hanstock C C, et al. Prefrontal glutamate levels differentiate early phase schizophrenia and methamphetamine addiction: a (1)H MRS study at 3Tesla. Schizophrenia Res, 2014, 157: 231–237

    Article  Google Scholar 

  64. Sung Y H, Yurgelun-Todd D A, Shi X F, et al. Decreased frontal lobe phosphocreatine levels in methamphetamine users. Drug Alcohol Dependence, 2013, 129: 102–109

    Article  Google Scholar 

  65. Sung Y H, Carey P D, Stein D J, et al. Decreased frontal N-acetylaspartate levels in adolescents concurrently using both methamphetamine and marijuana. Behavioural Brain Res, 2013, 246: 154–161

    Article  Google Scholar 

  66. Cloak C C, Alicata D, Chang L, et al. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users. Drug Alcohol Dependence, 2011, 119: 207–215

    Article  Google Scholar 

  67. Sung Y H, Cho S C, Hwang J, et al. Relationship between N-acetyl-aspartate in gray and white matter of abstinent methamphetamine abusers and their history of drug abuse: a proton magnetic resonance spectroscopy study. Drug Alcohol Dependence, 2007, 88: 28–35

    Article  Google Scholar 

  68. Chang L, Ernst T, Grob C S, et al. Cerebral1H MRS alterations in recreational 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) users. J Magn Reson Imag, 1999, 10: 521–526

    Article  Google Scholar 

  69. Chang L, Ernst T, Speck O, et al. Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. Am J Psychiatry, 2005, 162: 361–369

    Article  Google Scholar 

  70. Daumann J, Fischermann T, Pilatus U, et al. Proton magnetic resonance spectroscopy in ecstasy (MDMA) users. Neurosci Lett, 2004, 362: 113–116

    Article  Google Scholar 

  71. Ernst T, Chang L, Leonido-Yee M, et al. Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1H MRS study. Neurology, 2000, 54: 1344–1349

    Article  Google Scholar 

  72. Nordahl T E, Salo R, Natsuaki Y, et al. Methamphetamine users in sustained abstinence: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry, 2005, 62: 444–452

    Article  Google Scholar 

  73. Nordahl T E, Salo R, Possin K, et al. Low N-acetyl-aspartate and high choline in the anterior cingulum of recently abstinent methamphetamine-dependent subjects: a preliminary proton MRS study. Psychiatry Res-Neuroimag, 2002, 116: 43–52

    Article  Google Scholar 

  74. Reneman L, Majoie C B, Flick H, et al. Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results. Am J Neuroradiol, 2002, 23: 231–237

    Google Scholar 

  75. Reneman L, Majoie C B L M, Schmand B, et al. Prefrontal N-acetylaspartate is strongly associated with memory performance in (abstinent) ecstasy users: preliminary report. Biol Psychiatry, 2001, 50: 550–554

    Article  Google Scholar 

  76. Ernst T, Chang L. Adaptation of brain glutamate plus glutamine during abstinence from chronic methamphetamine use. J Neuroimmune Pharmacol, 2008, 3: 165–172

    Article  Google Scholar 

  77. Lin J C, Jan R K, Kydd R R, et al. Investigating the microstructural and neurochemical environment within the basal ganglia of current methamphetamine abusers. Drug Alcohol Dependence, 2015, 149: 122–127

    Article  Google Scholar 

  78. Salo R, Buonocore M H, Leamon M, et al. Extended findings of brain metabolite normalization in MA-dependent subjects across sustained abstinence: a proton MRS study. Drug Alcohol Dependence, 2011, 113: 133–138

    Article  Google Scholar 

  79. Salo R, Nordahl T E, Buonocore M H, et al. Spatial inhibition and the visual cortex: a magnetic resonance spectroscopy imaging study. Neuropsychologia, 2011, 49: 830–838

    Article  Google Scholar 

  80. Salo R, Nordahl T E, Natsuaki Y, et al. Attentional control and brain metabolite levels in methamphetamine abusers. Biol Psychiatry, 2007, 61: 1272–1280

    Article  Google Scholar 

  81. Yang W, Yang R, Luo J, et al. Increased absolute glutamate concentrations and glutamate-to-creatine ratios in patients with methamphetamine use disorders. Front Psychiatry, 2018, 9: 368

    Article  Google Scholar 

  82. Liu X L, Li L, Li J N, et al. Quantifying absolute glutamate concentrations in nucleus accumbens of prescription opioid addicts by using (1)H MRS. Brain Behav, 2017, 7: e00769

    Article  Google Scholar 

  83. Greenwald M K, Woodcock E A, Khatib D, et al. Methadone maintenance dose modulates anterior cingulate glutamate levels in heroin-dependent individuals: a preliminary in vivo (1)H MRS study. Psychiatry Res-Neuroimag, 2015, 233: 218–224

    Article  Google Scholar 

  84. Hermann D, Frischknecht U, Heinrich M, et al. MR spectroscopy in opiate maintenance therapy: association of glutamate with the number of previous withdrawals in the anterior cingulate cortex. Addiction Biol, 2012, 17: 659–667

    Article  Google Scholar 

  85. Murray D E, Durazzo T C, Schmidt T P, et al. Frontal metabolite concentration deficits in opiate dependence relate to substance use, cognition, and self-regulation. J Addiction Res Therapy, 2016, 7: 286

    Article  Google Scholar 

  86. Silveri M M, Pollack M H, Diaz C I, et al. Cerebral phosphorus metabolite and transverse relaxation time abnormalities in heroin-dependent subjects at onset of methadone maintenance treatment. Psychiatry Res-Neuroimag, 2004, 131: 217–226

    Article  Google Scholar 

  87. Verdejo-García A, Lubman D I, Roffel K, et al. Cingulate biochemistry in heroin users on substitution pharmacotherapy. Aust New Zealand J Psychiatry, 2013, 47: 244–249

    Article  Google Scholar 

  88. Yücel M, Lubman D I, Harrison B J, et al. Neuronal, physiological and brain-behavioural abnormalities in opiate-addicted individuals. Mol Psychiatry, 2007, 12: 611

    Article  Google Scholar 

  89. Bitter S M, Weber W A, Chu W J, et al. N-acetyl aspartate levels in adolescents with bipolar and/or cannabis use disorders. J Dual Diagnosis, 2014, 10: 39–43

    Article  Google Scholar 

  90. van de Giessen E, Weinstein J J, Cassidy C M, et al. Deficits in striatal dopamine release in cannabis dependence. Mol Psychiatry, 2017, 22: 68–75

    Article  Google Scholar 

  91. Hermann D, Sartorius A, Welzel H, et al. Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users. Biol Psychiatry, 2007, 61: 1281–1289

    Article  Google Scholar 

  92. Silveri M M, Jensen J E, Rosso I M, et al. Preliminary evidence for white matter metabolite differences in marijuana-dependent young men using 2D J-resolved magnetic resonance spectroscopic imaging at 4 Tesla. Psychiatry Res-Neuroimag, 2011, 191: 201–211

    Article  Google Scholar 

  93. Mashhoon Y, Jensen J E, Sneider J T, et al. Lower left thalamic Myo-inositol levels associated with greater cognitive impulsivity in marijuana-dependent young men: preliminary spectroscopic evidence at 4T. J Add Res Therapy, 2013, 4: 009

    Google Scholar 

  94. Prescot A P, Locatelli A E, Renshaw P F, et al. Neurochemical alterations in adolescent chronic marijuana smokers: a proton MRS study. Neuroimage, 2011, 57: 69–75

    Article  Google Scholar 

  95. Muetzel R L, Marjańska M, Collins P F, et al. In vivo (1)H magnetic resonance spectroscopy in young-adult daily marijuana users. Neuroimage-Clin, 2013, 2: 581–589

    Article  Google Scholar 

  96. Prescot A P, Renshaw P F, Yurgelun-Todd D A. γ-Amino butyric acid and glutamate abnormalities in adolescent chronic marijuana smokers. Drug Alcohol Dependence, 2013, 129: 232–239

    Article  Google Scholar 

  97. Chang L, Ernst T, Strickland T, et al. Gender effects on persistent cerebral metabolite changes in the frontal lobes of abstinent cocaine users. Am J Psychiatry, 1999, 156: 716–722

    Google Scholar 

  98. Martinez D, Slifstein M, Nabulsi N, et al. Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [(11)C]ABP688 and magnetic resonance spectroscopy. Biol Psychiatry, 2014, 75: 165–171

    Article  Google Scholar 

  99. Li S J, Wang Y, Pankiewicz J, et al. Neurochemical adaptation to cocaine abuse: reduction of N-acetyl aspartate in thalamus of human cocaine abusers. Biol Psychiatry, 1999, 45: 1481–1487

    Article  Google Scholar 

  100. Hulka L M, Scheidegger M, Vonmoos M, et al. Glutamatergic and neurometabolic alterations in chronic cocaine users measured with (1) H-magnetic resonance spectroscopy. Addiction Biol, 2016, 21: 205–217

    Article  Google Scholar 

  101. Ke Y, Streeter C C, Nassar L E, et al. Frontal lobe GABA levels in cocaine dependence: a two-dimensional, J-resolved magnetic resonance spectroscopy study. Psychiatry Res-Neuroimag, 2004, 130: 283–293

    Article  Google Scholar 

  102. Schmaal L, Veltman D J, Nederveen A, et al. N-acetylcysteine normalizes glutamate levels in cocaine-dependent patients: a randomized crossover magnetic resonance spectroscopy study. Neuropsychopharmacol, 2012, 37: 2143–2152

    Article  Google Scholar 

  103. Durazzo T C, Gazdzinski S, Banys P, et al. Cigarette smoking exacerbates chronic alcohol-induced brain damage: a preliminary metabolite imaging study. Alcohol Clinical Exp Res, 2005, 28: 1849–1860

    Article  Google Scholar 

  104. Meyerhoff D J, Blumenfeld R, Truran D, et al. Effects of heavy drinking, binge drinking, and family history of alcoholism on regional brain metabolites. Alcohol Clin Exp Res, 2004, 28: 650–661

    Article  Google Scholar 

  105. Mason G F, Krystal J H. MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR Biomed, 2006, 19: 690–701

    Article  Google Scholar 

  106. Prisciandaro J J, Schacht J P, Prescot A P, et al. Associations between recent heavy drinking and dorsal anterior cingulate N-acetylaspartate and glutamate concentrations in non-treatment-seeking individuals with alcohol dependence. Alcohol Clin Exp Res, 2016, 40: 491–496

    Article  Google Scholar 

  107. Meyerhoff D J, Murray D E, Durazzo T C, et al. Brain GABA and glutamate concentrations following chronic gabapentin administration: a convenience sample studied during early abstinence from alcohol. Front Psychiatry, 2018, 9: 78

    Article  Google Scholar 

  108. Forstera B, Castro P A, Moraga-Cid G, et al. Potentiation of Gamma aminobutyric acid receptors (GABAAR) by ethanol: how are inhibitory receptors affected? Front Cell Neurosci, 2016, 10: 114

    Article  Google Scholar 

  109. Stephens D N, King S L, Lambert J J, et al. GABAA receptor subtype involvement in addictive behaviour. Genes Brain Behav, 2017, 16: 149–184

    Article  Google Scholar 

  110. Alasmari F, Goodwani S, McCullumsmith R E, et al. Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol, 2018, 171: 32–49

    Article  Google Scholar 

  111. Gallinat J, Lang U E, Jacobsen L K, et al. Abnormal hippocampal neurochemistry in smokers: evidence from proton magnetic resonance spectroscopy at 3T. J Clin Psychopharmacol, 2007, 27: 80–84

    Article  Google Scholar 

  112. Mashhoon Y, Janes A C, Jensen J E, et al. Anterior cingulate proton spectroscopy glutamate levels differ as a function of smoking cessation outcome. Progress Neuro-Psychopharmacol Biol Psychiatry, 2011, 35: 1709–1713

    Article  Google Scholar 

  113. Nordahl T E, Salo R, Natsuaki Y, et al. Methamphetamine users in sustained abstinence: a proton magnetic resonance spectroscopy study. Arch General Psychiatry, 2005, 62: 444

    Article  Google Scholar 

  114. Liu H S, Chou M C, Chung H W, et al. Potential long-term effects of MDMA on the basal ganglia-thalamocortical circuit: a proton MR spectroscopy and diffusion-tensor imaging study. Radiology, 2011, 260: 531–540

    Article  Google Scholar 

  115. Chang L, Mehringer C M, Ernst T, et al. Neurochemical alterations in asymptomatic abstinent cocaine users: a proton magnetic resonance spectroscopy study. Biol Psychiatry, 1997, 42: 1105–1114

    Article  Google Scholar 

  116. Thompson P M, Andreassen O A, Arias-Vasquez A, et al. ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. Neuroimage, 2017, 145: 389–408

    Article  Google Scholar 

  117. Morley K C, Lagopoulos J, Logge W, et al. Neurometabolite levels in alcohol use disorder patients during baclofen treatment and prediction of relapse to heavy drinking. Front Psychiatry, 2018, 9: 412

    Article  Google Scholar 

  118. Frye M A, Hinton D J, Karpyak V M, et al. Elevated glutamate levels in the left dorsolateral prefrontal cortex are associated with higher cravings for alcohol. Alcohol Clin Exp Res, 2016, 40: 1609–1616

    Article  Google Scholar 

  119. Cowan R L, Joers J M, Dietrich M S. N-acetylaspartate (NAA) correlates inversely with cannabis use in a frontal language processing region of neocortex in MDMA (Ecstasy) polydrug users: a 3T magnetic resonance spectroscopy study. Pharmacol Biochem Behav, 2009, 92: 105–110

    Article  Google Scholar 

  120. Wu Q, Qi C, Long J, et al. Metabolites alterations in the medial prefrontal cortex of methamphetamine users in abstinence: a (1)H MRS study. Front Psychiatry, 2018, 9: 478

    Article  Google Scholar 

  121. Xing X X, Zuo X N. The anatomy of reliability: a must read for future human brain mapping. Sci Bull, 2018, 63: 1606–1607

    Article  Google Scholar 

  122. Zuo X N, Xu T, Milham M P. Harnessing reliability for neuroscience research. Nat Hum Behav, 2019, 3: 768–771

    Article  Google Scholar 

  123. Baeshen A, Wyss P O, Henning A, et al. Test-retest reliability of the brain metabolites GABA and Glx with JPRESS, PRESS, and MEGA-PRESS MRS sequences in vivo at 3T. J Magn Reson Imag, 2019, 51: 1181–1191

    Article  Google Scholar 

  124. Shungu D C, Mao X, Gonzales R, et al. Brain γ-aminobutyric acid (GABA) detection in vivo with the J-editing (1)H MRS technique: a comprehensive methodological evaluation of sensitivity enhancement, macromolecule contamination and test-retest reliability. NMR Biomed, 2016, 29: 932–942

    Article  Google Scholar 

  125. Prisciandaro J J, Mikkelsen M, Saleh M G, et al. An evaluation of the reproducibility of (1)H-MRS GABA and GSH levels acquired in healthy volunteers with J-difference editing sequences at varying echo times. Magn Reson Imag, 2020, 65: 109–113

    Article  Google Scholar 

  126. Jensen J E, Auerbach R P, Pisoni A, et al. Localized MRS reliability of in vivo glutamate at 3T in shortened scan times: a feasibility study. NMR Biomed, 2017, 30: e3771

    Article  Google Scholar 

  127. Morris P, Bachelard H. Reflections on the application of 13C-MRS to research on brain metabolism. NMR Biomed, 2003, 16: 303–312

    Article  Google Scholar 

  128. Lanz B, Xin L, Millet P, et al. In vivo quantification of neuro-glial metabolism and glial glutamate concentration using 1H-[13C] MRS at 14.1T. J Neurochem, 2014, 128: 125–139

    Article  Google Scholar 

  129. Sibson N R, Dhankhar A, Mason G F, et al. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA, 1998, 95: 316–321

    Article  Google Scholar 

  130. Illes P, Burnstock G, Tang Y. Astroglia-derived ATP modulates CNS neuronal circuits. Trends Neurosci, 2019, 42: 885–898

    Article  Google Scholar 

  131. Voineskos D, Blumberger D M, Zomorrodi R, et al. Altered transcranial magnetic stimulation-electroencephalographic markers of inhibition and excitation in the dorsolateral prefrontal cortex in major depressive disorder. Biol Psychiatry, 2019, 85: 477–486

    Article  Google Scholar 

  132. Shine J M, Poldrack R A. Principles of dynamic network reconfiguration across diverse brain states. Neuroimage, 2018, 180: 396–405

    Article  Google Scholar 

  133. Khanna A, Pascual-Leone A, Michel C M, et al. Microstates in resting-state EEG: current status and future directions. Neurosci Biobehaval Rev, 2015, 49: 105–113

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2017YFC1310400), National Nature Science Foundation (Grant No. 81771436, 81801319), Shanghai Municipal Health and Family Planning Commission (Grant No. 2017ZZ02021), Shanghai Key Laboratory of Psychotic Disorders (Grant No. 13DZ2260500), Program of Shanghai Academic Research Leader (Grant No. 17XD1403300), and Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX05), and Shanghai Clinical Research Center for Mental Health (Grant No. 19MC1911100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Su or Min Zhao.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Tan, H., Lei, H. et al. Proton magnetic resonance spectroscopy in substance use disorder: recent advances and future clinical applications. Sci. China Inf. Sci. 63, 170101 (2020). https://doi.org/10.1007/s11432-019-2818-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2818-5

Keywords

Navigation