Skip to main content
Log in

Asymptotic multistability and local S-asymptotic ω-periodicity for the nonautonomous fractional-order neural networks with impulses

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper focuses on the investigation of asymptotic multistability and on local S-asymptotic ω-periodicity for nonautonomous fractional-order neural networks (FONNs) with impulses. Several criteria on the existence, uniqueness, and invariant sets of nonautonomous FONNs with impulses are derived by constructing convergent sequences and comparison principles, respectively. In addition, using the Lyapunov direct method, some novel conditions of boundedness and local asymptotic stability of the FONNs discussed are obtained. Also, the sufficient conditions for local S-asymptotic ω-periodicities of the system are presented. Finally, a discussion using two examples verifies the validity of our findings, which imply that global asymptotic stability is a special case of asymptotic multistability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives. Pittsburgh: Academic Press, 1998

    MATH  Google Scholar 

  2. Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations. Nonlin Anal-Theor Methods Appl, 2008, 69: 2677–2682

    Article  MathSciNet  Google Scholar 

  3. Agarwal R P, Benchohra M, Hamani S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl Math, 2010, 109: 973–1033

    Article  MathSciNet  Google Scholar 

  4. Zhang Q, Cui N X, Shang Y L, et al. Relevance between fractional-order hybrid model and unified equivalent circuit model of electric vehicle power battery. Sci China Inf Sci, 2018, 61: 070208

    Article  Google Scholar 

  5. Li H, Kao Y G. Mittag-Leffler stability for a new coupled system of fractional-order differential equations with impulses. Appl Math Comput, 2019, 361: 22–31

    Article  MathSciNet  Google Scholar 

  6. Li H, Kao Y G. Synchronous stability of the fractional-order discrete-time dynamical network system model with impulsive couplings. Neurocomputing, 2019, 363: 205–211

    Article  Google Scholar 

  7. Chen J, Zeng Z, Jiang P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw, 2014, 51: 1–8

    Article  Google Scholar 

  8. Kaslik E, Sivasundaram S. Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlin Anal-Real World Appl, 2012, 13: 1489–1497

    Article  MathSciNet  Google Scholar 

  9. El-Borai M M, Debbouche A. Almost periodic solutions of some nonlinear fractional differential equations. Int J Contemp Math Sci, 2009, 4: 1373–1387

    MathSciNet  MATH  Google Scholar 

  10. Henríquez H R, Pierri M, Táboas P. On S-asymptotically ω-periodic functions on Banach spaces and applications. J Math Anal Appl, 2008, 343: 1119–1130

    Article  MathSciNet  Google Scholar 

  11. Henríquez H R. Asymptotically periodic solutions of abstract differential equations. Nonlin Anal-Theor Methods Appl, 2013, 80: 135–149

    Article  MathSciNet  Google Scholar 

  12. Chen B, Chen J. Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks. Neural Netw, 2015, 68: 78–88

    Article  Google Scholar 

  13. Chen B, Chen J. Global O(tα) stability and global asymptotical periodicity for a non-autonomous fractional-order neural networks with time-varying delays. Neural Netw, 2016, 73: 47–57

    Article  Google Scholar 

  14. Wan L, Wu A. Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractional-order neural networks. Neurocomputing, 2018, 315: 272–282

    Article  Google Scholar 

  15. Wang Y Q, Lu J Q, Lou Y J. Halanay-type inequality with delayed impulses and its applications. Sci China Inf Sci, 2019, 62: 192206

    Article  MathSciNet  Google Scholar 

  16. Li H L, Hu C, Jiang Y L, et al. Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks. Chaos Solitons Fractals, 2016, 92: 142–149

    Article  MathSciNet  Google Scholar 

  17. Li X D, Song S J, Wu J H. Impulsive control of unstable neural networks with unbounded time-varying delays. Sci China Inf Sci, 2018, 61: 012203

    Article  Google Scholar 

  18. Han Y, Li C, Zeng Z. Asynchronous event-based sampling data for impulsive protocol on consensus of non-linear multi-agent systems. Neural Netw, 2019, 115: 90–99

    Article  Google Scholar 

  19. Li X, Ho D W C, Cao J. Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica, 2019, 99: 361–368

    Article  MathSciNet  Google Scholar 

  20. Li X, Yang X, Huang T. Persistence of delayed cooperative models: impulsive control method. Appl Math Comput, 2019, 342: 130–146

    MathSciNet  MATH  Google Scholar 

  21. Chen J, Li C, Yang X. Asymptotic stability of delayed fractional-order fuzzy neural networks with impulse effects. J Franklin Inst, 2018, 355: 7595–7608

    Article  MathSciNet  Google Scholar 

  22. Zhang C L, Deng F Q, Luo Y P. Stabilization for multi-group coupled stochastic models by delay feedback control and nonlinear impulsive control. Sci China Inf Sci, 2018, 61: 070212

    Article  MathSciNet  Google Scholar 

  23. Stamova I, Henderson J. Practical stability analysis of fractional-order impulsive control systems. ISA Trans, 2016, 64: 77–85

    Article  Google Scholar 

  24. Yang X, Li C, Song Q, et al. Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks. Neurocomputing, 2016, 207: 276–286

    Article  Google Scholar 

  25. Wang L, Song Q, Liu Y, et al. Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay. Neurocomputing, 2017, 243: 49–59

    Article  Google Scholar 

  26. Cao J, Feng G, Wang Y. Multistability and multiperiodicity of delayed Cohen Grossberg neural networks with a general class of activation functions. Phys D-Nonlin Phenomena, 2008, 237: 1734–1749

    Article  MathSciNet  Google Scholar 

  27. Di Marco M, Forti M, Grazzini M, et al. Limit set dichotomy and multistability for a class of cooperative neural networks with delays. IEEE Trans Neural Netw Learn Syst, 2012, 23: 1473–1485

    Article  Google Scholar 

  28. Zeng Z, Zheng W X. Multistability of two kinds of recurrent neural networks with activation functions symmetrical about the origin on the phase plane. IEEE Trans Neural Netw Learn Syst, 2013, 24: 1749–1762

    Article  Google Scholar 

  29. Wang L, Chen T. Multiple μ-stability of neural networks with unbounded time-varying delays. Neural Netw, 2014, 53: 109–118

    Article  Google Scholar 

  30. Cheng C Y, Lin K H, Shih C W, et al. Multistability for delayed neural networks via sequential contracting. IEEE Trans Neural Netw Learn Syst, 2015, 26: 3109–3122

    Article  MathSciNet  Google Scholar 

  31. Liu P, Zeng Z, Wang J. Multistability of recurrent neural networks with nonmonotonic activation functions and unbounded time-varying delays. IEEE Trans Neural Netw Learn Syst, 2018, 29: 3000–3010

    MathSciNet  Google Scholar 

  32. Liu P, Zeng Z, Wang J. Multistability analysis of a general class of recurrent neural networks with non-monotonic activation functions and time-varying delays. Neural Netw, 2016, 79: 117–127

    Article  Google Scholar 

  33. Stamova I. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlin Dyn, 2014, 77: 1251–1260

    Article  MathSciNet  Google Scholar 

  34. Wan L, Wu A. Multistability in Mittag-Leffler sense of fractional-order neural networks with piecewise constant arguments. Neurocomputing, 2018, 286: 1–10

    Article  Google Scholar 

  35. Li H L, Jiang Y L, Wang Z, et al. Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network. Appl Math Comput, 2015, 270: 269–277

    MathSciNet  MATH  Google Scholar 

  36. Meng X, Kao Y G, Karimi H R, et al. Global Mittag-Leffler stability for fractional-order coupled systems on network without strong connectedness. Sci China Inf Sci, 2020, 63: 132201

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61873071) and Shandong Provincial Natural Science Foundation (Grant No. ZR2019MF006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggui Kao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, Y., Li, H. Asymptotic multistability and local S-asymptotic ω-periodicity for the nonautonomous fractional-order neural networks with impulses. Sci. China Inf. Sci. 64, 112207 (2021). https://doi.org/10.1007/s11432-019-2821-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2821-x

Keywords

Navigation