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Abstract—It is known that the bit errors of polar codes
with successive cancellation (SC) decoding are coupled. However,
existing concatenation schemes of polar codes with other error
correction codes rarely take this coupling effect into consider-
ation. To achieve a better error performance of concatenated
systems with polar codes as inner codes, one can divide all bits
in an outer block into different polar blocks to completely de-
correlate the possible coupled errors in the transmitter side. We
call this interleaving a blind interleaving (BI) which serves as
a benchmark. Two BI schemes, termed BI-DP and BI-CDP, are
proposed in the paper. To better balance performance, memory
size, and the decoding delay from the de-interleaving, a novel
interleaving scheme, named the correlation-breaking interleaving
(CBI), is proposed. The CBI breaks the correlated information
bits based on the error correlation pattern proposed and proven
in this paper. The proposed CBI scheme is general in the sense
that any error correction code can serve as the outer code. In this
paper, Low-Density Parity-Check (LDPC) codes and BCH codes
are used as two examples of the outer codes of the interleaving
scheme. The CBI scheme 1) can keep the simple SC polar
decoding while achieving a better error performance than the
state-of-the-art (SOA) direct concatenation of polar codes with
LDPC codes and BCH codes; 2) achieves a comparable error
performance as the BI-DP scheme with a smaller memory size
and a shorter decoding delay. Numerical results are provided to
verify the performance of the BI schemes and the CBI scheme.

Keywords—Polar codes, SC decoding, BP decoding, interleav-
ing, code concatenation

I. INTRODUCTION

THE channel polarization and polar codes were discovered

by Arıkan in [1] which made a great progress in coding

theory. Polar codes provably achieve the capacity of symmetric

binary-input discrete memoryless channels (B-DMCs) with a

low encoding and decoding complexity. The encoding and

decoding process (with successive cancellation, SC) can be

implemented with a complexity of O(N logN), where N
is the block length. The idea of polar codes is to transmit

information bits on noiseless bit channels while fixing the

information bits on the completely noisy bit channels. The
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fixed bits (also called as the frozen bits) are made known to

both the transmitter and receiver. The standard format of polar

codes in [1] is non-systematic. Later, the systematic version

of polar codes was proposed in [2]. The construction of polar

codes is studied in [3–6] and the hardware implementation is

presented in [7–9].

To improve the polar code performance with the finite block

length, various decoding processes [10–13] and concatenation

schemes [14–18] were proposed. The decoding processes in

these works have higher complexity than the original SC

decoding of [1]. The performance improvements in these

decoding algorithms are at the cost of the decoding complexity.

The introduction of the systematic polar codes [2] provides a

new way to improve bit error rate (BER) performance while

still maintaining almost the same decoding complexity as non-

systematic polar codes.

The spreading effect of the error bit on the following

decoding steps results in the known error propagation problem.

The better BER performance of systematic polar codes can

be thought of coming from the error-decoupling. The non-

systematic encoding is xN
1 = uN

1 G, where the vector uN
1 con-

tains the source bits and G is the generator matrix. From the

two-step decoding of systematic polar codes (first estimating

ûN
1 and then calculating x̂N

1 from it), this decoupling must

be accomplished through the re-encoding x̂N
1 = ûN

1 G after

obtaining the estimate ûN
1 . From x̂N

1 = ûN
1 G and that the

number of errors in x̂N
1 is smaller than that of ûN

1 , it can be

concluded that the coupling of the errors in ûN
1 is controlled

by the columns of G. A proposition of this error correlation

pattern is formally stated and proven in this paper.

Two blind interleaving (BI) schemes are presented to de-

correlate the coupled errors. A concatenation scheme, which

divides all bits in an outer code block into different polar

blocks to completely de-correlate the possible coupled errors,

is first introduced as a benchmark. Note that this BI scheme is

also called a direct product of the inner and outer code, termed

as BI-DP in the paper. The BI scheme can keep the simple SC

polar decoding while achieving a better BER performance than

the state-of-the-art concatenation of polar codes with outer

codes. An improved BI scheme, called ‘quasi’ cyclicly shifted

direct product BI (BI-CDP), is introduced to improve the BI-

DP scheme. This BI-CDP scheme takes into consideration the

different levels of protection experienced by the information

bits in one polar block, and assigns the coded bits from the

outer code into cyclicly shifted information positions of the

inner code. This BI-CDP scheme is shown to yield a better

error performance than the BI-DP scheme. Note that the BI-

CDP is different from the Twill interleaving in [19] since it

http://arxiv.org/abs/1702.05202v2
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does not require the greatest common divisor (gcd) of the

number of the encoder for the inner code and the outer code

equal to 1. In this paper, the number of the encoder for the

inner code and the outer code is the code length of the outer

code and the number of the information bits of the inner code,

respectively.

From the error correlation pattern presented in the paper,

a novel interleaving scheme, named the correlation-breaking

interleaving (CBI), is proposed to better balance among per-

formance, memory size, and the decoding delay from the de-

interleaving operation. The proposed CBI scheme divides the

information bits into two groups: the group of the correlated

bits Ac and the group of the uncorrelated bits Āc. Theoretical

foundation for procedures to assign elements into these two

groups is provided. As in the BI scheme, the CBI scheme

assigns |Ac| encoded bits from |Ac| different outer code blocks

to the correlated information bits of one polar block. Different

from the BI scheme, the CBI scheme assigns |Āc| encoded bits

from one outer code block to the uncorrelated information bits

of one polar block, which saves the required number of inner

polar code blocks. As a result, the memory size for the de-

interleaver and the decoding delay of the outer code can be

saved.

Although any outer code works in the CBI scheme, LDPC

and BCH codes are chosen in this paper as examples: the

former requiring an iterative soft decoding process while the

latter only requiring a simpler syndrome decoder [20]. Note

that the concatenation of polar codes with LDPC codes is

studied in [14] and [15] where no interleaving is used and

BP (belief-propagation) decoding is applied for polar codes.

For the ease of description, let us denote polar codes applying

SC decoding as POLAR(N ,K)-SC, and polar codes applying

BP decoding as POLAR(N ,K)-BP, where K is the number

of information bits of polar codes in one code block. Also

let us denote the direct concatenation system with a LDPC

code as the outer code and a polar code as the inner code

as LDPC(Nl,Kl)+POLAR(N ,K), where Nl and Kl are the

code length and the number of information bits in one LDPC

block, respectively. If a CBI scheme is used between the

outer and the inner code, then we denote such a system

as LDPC(Nl,Kl)+CBI+POLAR(N ,K). Similarly, the blind

interleaving systems, BI-DP and BI-CDP, are denoted as

LDPC(Nl,Kl)+BI-DP+POLAR(N ,K) and LDPC(Nl,Kl)+BI-

CDP+POLAR(N ,K), respectively.

Simulation results are provided to verify the BER

performance of the interleaving schemes in this paper. At a

BER = 10−4, the LDPC(155,64)+CBI+POLAR(256,64)-SC

system achieves 1.4 dB and 1.2 dB gains over the direct

concatenation systems LDPC(155,64)+POLAR(256,64)-

SC and LDPC(155,64)+POLAR(256,64)-BP, respectively.

The LDPC(155,64)+CBI+POLAR(256,64)-SC system

also achieves a comparable performance as that of the

LDPC(155,64)+BI-DP+POLAR(256,64)-SC system. The

proposed LDPC(155,64)+BI-CDP+POLAR(256,64)-SC

outperforms all the concatenation systems reported. The

CBI scheme also works for BCH codes. Here we take the

BCH(127,57) with the code length 127 and the number of

information bits 57 in one code block as an example. At a

BER = 10−4, the BCH(127,57)+CBI+POLAR(256,64)-SC

system has a 0.7 dB gain over the direct concatenation system

BCH(127,57)+POLAR(256,64)-SC.

Note that portions of this work are investigated in [21]

where the theorems of the error correlation pattern are not

proven and the BI scheme is only one of the two BI schemes

in this paper. What’s more, the CBI scheme in this paper has

a different assignment of the |Ac| correlated information bits

from that in [21]. In this paper, we provide the proofs of

the theorems, improve the BI scheme and the CBI scheme,

and provide examples of the CBI scheme. Specifically, the

contribution of this paper can be summarized as: 1) Theo-

retically, we prove that the errors from the SC decoding are

coupled. The error correlation pattern is found and proven

from two perspectives; 2) Two BI schemes are introduced and

a universal CBI scheme (based on the error correlation pattern)

is proposed; 3) The CBI scheme is theoretically explained

based on the cyclic arrangements of coded bits from the outer

code to the inner code, and details and examples are provided

to illustrate the key parameters.

In this paper, we use vN1 to represent a row vector with

elements (v1, v2, ..., vN ). For a vector vN1 , the vector vji is

a subvector (vi, ..., vj) with 1 ≤ i, j ≤ N . For a given set

A ∈ {1, 2, ..., N}, vA denotes a subvector with elements in

{vi, i ∈ A}.

The rest of the paper is organized as follows. Section II

introduces the fundamentals of non-systematic and systematic

polar codes. The error correlation pattern is raised and proven

in section III. Section IV introduces the two BI schemes

and proposes the novel CBI scheme. Section V presents the

simulation results. The conclusion remarks are provided at the

end.

II. BACKGROUND OF POLAR CODES

In this section, the relevant theories on non-systematic polar

codes [1] and systematic polar codes [2] are presented.

A. Preliminaries of Non-Systematic Polar Codes

Let W : X → Y denote a B-DMC where X = {0, 1} is

the input and Y is the output alphabet of the channel. The

transition probability is denoted by W (y|x), x ∈ X , y ∈ Y .

The generator matrix for polar codes is GN = BF⊗n where

B is a bit-reversal matrix, F =
(

1 0
1 1

)

, n = log2 N , N is the

block length, and F⊗n is the nth Kronecker power of the

matrix F over the binary field F2. In this paper, we consider

an encoding matrix GN = F⊗n without the permutation

matrix B, which only affects the decoding order [2]. For

compactness, the subscript of GN is sometimes omitted as

G without causing confusion of the block length N .

The channel polarization process is performed as follows.

The N = 2n(n ≥ 1) independent copies of W are first

combined and then split into N bit channels {W
(i)
N }Ni=1 with:

W
(i)
N (yN1 , ui−1

1 |ui) =
∑

uN
i+1

∈XN−i

1

2N−1
WN (yN1 |u1), (1)
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Fig. 1. An encoding circuit of the non-systematic polar codes with N = 8.
Signals flow from the left to the right. Each edge carries a signal of 0 or 1.

where

WN (yN1 |uN
1 ) = WN (yN1 |uN

1 GN ) =

N
∏

i=1

W (yi|xi). (2)

Mathematically, the encoding is a process to obtain the

codeword xN
1 through xN

1 = uN
1 G for given source bits uN

1 .

The source bits uN
1 consists of the information bits and the

frozen bits, denoted by uA and uĀ, respectively. Frozen bits

refer to the fixed transmission bits which are known to both

the transmitter and the receiver. The set A includes the indices

for the information bits and Ā is the complementary set, which

can be constructed as in [1, 3–6]. Both sets A and Ā are in

{1, 2, ..., N} for polar codes of length N . The source bits uN
1

can be split as uN
1 = (uA, uĀ). The codeword can then be

expressed as

xN
1 = uAGA + uĀGĀ, (3)

where GA is the submatrix of GN with rows specified by the

set A.

An encoding diagram is shown in Fig. 1. Each node adds

the signals on all incoming edges from the left and sends the

result out on all edges to the right. The operations are done in

the binary field F2. One such encoding process is highlighted

in Fig. 1 for x2 = u5 ⊕ u6 ⊕ u7 ⊕ u8. If the nodes in Fig. 1

are viewed as memory elements, the encoding process is to

calculate the corresponding binary values to fill all the memory

elements from the left to the right. This view is helpful when

it comes to systematic polar codes in the following section.

B. Systematic Polar Codes

The systematic polar code is constructed by specifying a

set of indices of the codeword xN
1 as the indices to convey

the information bits. Denote this set as B (|B| = K) and

the complementary set as B̄. The codeword xN
1 is thus split

as (xB, xB̄). Define a matrix GAB that is a submatrix of the

generator matrix with elements {Gi,j}i∈A,j∈B . Splitting xN
1

in (3) into (xB, xB̄) requires splitting the matrices GA and

GĀ as:

GA = (GAB, GAB̄) , (4)

GĀ = (GĀB, GĀB̄) . (5)

Then xN
1 can be split as the following:

{

xB = uAGAB + uĀGĀB,

xB̄ = uAGAB̄ + uĀGĀB̄.
(6)

We can see from (6) that, in systematic polar codes, xB

plays the role that uA plays in non-systematic polar codes.

Given a non-systematic encoder (A, uĀ), there exists a sys-

tematic encoder (B, uĀ) if A and B have the same number of

elements and the matrix GAB is invertible [2]. Then a system-

atic encoder can perform the mapping xB 7→ xN
1 = (xB, xB̄).

To realize this systematic mapping, xB̄ needs to be computed

for any given information bits xB . To this end, we see from

(6) that xB̄ can be computed if uA is known. The vector uA

can be obtained as the following

uA = (xB − uĀGĀB)(GAB)
−1. (7)

In [2], it is shown that B = A satisfies all these conditions

in order to establish the one-to-one mapping xB 7→ uA. In

the rest of the paper, the systematic encoding of polar codes

adopts this selection of B: B = A. Therefore we can rewrite

(6) as
{

xA = uAGAA + uĀGĀA,

xĀ = uAGAĀ + uĀGĀĀ.
(8)

Note that the submatrix GAA is a lower triangular matrix with

ones at the diagonal. The entries above the diagonal are all

zeros.

Let us go back to the diagram in Fig. 1. For systematic polar

codes, the information bits are now conveyed in the right-

hand side in xA. To calculate xĀ, uA in the left-hand side

needs to be calculated first. Once uA is obtained, systematic

encoding can be performed in the same way as the non-

systematic encoding: performing binary additions from the

left to the right. Therefore, compared with non-systematic

encoding, systematic encoding has an additional round of

binary additions from the right to the left. The detailed analysis

of systematic encoding can be found in [22, 23].

C. SC Decoding

The SC decoding of polar codes follows the same graph as

shown in Fig. 1. The likelihood ratio (LR) of bit channel i is

defined as:

L
(i)
N =

W
(i)
N (yN1 , ui−1

1 |0)

W
(i)
N (yN1 , ui−1

1 |1)
. (9)

From [1], it is shown that the transition probability of bit

channel i can be recursively calculated, which results in a

recursive calculation of the LRs as:

L
(2i−1)
N (yN1 , û2i−2

1 ) =

L
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )L

(i)
N/2(y

N
N/2+1, û

2i−2
1,e ) + 1

L
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e ) + L

(i)
N/2(y

N
N/2+1, û

2i−2
1,e )

,
(10)

L
(2i)
N (yN1 , û2i−1

1 ) = [L
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )](1−2û2i−1)

· L
(i)
N/2(y

N
N/2+1, û

2i−2
1,e ).

(11)
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III. ERROR CORRELATION PATTERN

In [2][24], it is shown that the re-encoding process of x̂N
1 =

ûN
1 G after decoding ûN

1 does not amplify the number of errors

in ûN
1 . Instead, there are less errors in x̂N

1 than in ûN
1 . In this

section, we state a corollary proven in [25] and then provide a

proposition to show the error correlation pattern of the errors

in ûN
1 . This pattern is used in Section IV to design the CBI

scheme.

Corollary 1. The matrix GĀA = 0.

The proof of this corollary can be found in [25].

Now let us define the set Aj containing the non-zero

positions of column j of G as:

Aj = {i | 1 ≤ i ≤ N and Gi,j = 1} . (12)

Assume the entries of the set Aj are arranged in the ascending

order. Define Aj(a : b) as a vector containing element a to

element b of the set Aj . The following lemma can be deduced

directly from the construction and the SC decoding of polar

codes.

Lemma 1. Let Ai be as defined in (12) and j = i − N/2
(N/2 + 1 ≤ i ≤ N ). Then the LR of

∑

k∈Ai
uk is directly

affected by the decision of
∑

l∈Aj(1:N/2) ul.

Proof: To understand the decoding process, let us first

look closely at the encoding process of polar codes. Fig. 2

shows the structure of the generator matrix G = GN and the

corresponding details of the matrix, with respect to the matrix

GN/2. Two basic facts of the generator matrix GN are that:

• Fact One. Rows N/2 + 1 to N of G = GN contain two

copies of GN/2 as:
(

GN/2 GN/2

)

.

• Fact Two. Colums 1 to N/2 of G = GN contain two

copies of GN/2 as:

(

GN/2

GN/2

)

.

In the encoding process, the following two coded bits are

achieved:

xi =
∑

k∈Ai

uk (13)

xj =
∑

l∈Aj(1:N/2)

ul +
∑

l′∈Aj(N/2+1:N)

ul′ (14)

Because of Fact One of the generator matrix GN , the set

Aj(N/2 + 1 : N) (j = i − N/2) is the same as the set

Ai. Therefore the coded bit xj is:

xj =
∑

l∈Aj(1:N/2)

ul +
∑

k∈Ai

uk (15)

The coded bits xN
1 are transmitted over N independent under-

lying channels W , producing corresponding yN1 observations

at the receiver side.

In the decoding process, when estimation of u
N/2
1 is done,

denoted as û
N/2
1 , then Fact Two can be employed to provide

the other N/2 observations of the coded bits xN
N/2+1. For

example, the coded bit xi =
∑

k∈Ai
uk is observed from the

corresponding received sample yi.

With the estimated û
N/2
1 , another observation of xi =

∑

k∈Ai
uk is readily calculated as: yj−

∑

l∈Aj(1:N/2) ûl. This

G
N/2

0

N/2
G

N/2
G

(a) The structure of the generator matrix G
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Fig. 2. The structure of the genertor matrix G = GN = F⊗n and the details
of it. The variable j is spaced by N/2 from i.
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Fig. 3. The LR calculation of one stage involving xj and xi where j =

i−N/2.

process is captured by the recursive LR calculation in (11)

where
∑

l∈Aj(1:N/2) ûl is the estimated decision of the upper

left node and the LR of
∑

k∈Ai
uk (at the lower left node) is

to be calculated at that specific connection. Fig. 3 shows the

connection of that stage. Therefore, the LR of
∑

k∈Ai
uk is

affected by the decision of
∑

l∈Aj(1:N/2) ul for j = i−N/2: if

the decision of
∑

l∈Aj(1:N/2) ul is incorrect, then the incorrect

decision can cause the LR value of
∑

k∈Ai
uk incorrect.

Proposition 1. Let Ai be defined as in (12). Then, the errors

of ûAi
are dependent (or coupled).

Before going into the proof of this Proposition 1, we provide

an example to explain the meaning of it. As noted in Section
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I, the notation vA is a subvector of vN1 with elements specified

by the set A. Here is an example to show what exactly ûAi
is.

Let the block length be N = 16, the code rate of the polar code

be R = 0.5, and the underlying channel is the BEC channel

with an erasure probability 0.2. The set A is calculated to be

A = {8, 10, 11, 12, 13, 14, 15, 16}. Let i = 10, then we take

the indices of non-zero entries of column 10 of G as A10,

which is a collecting set of indices 10, 12, 14, 16. Therefore,

ûA10
is a subvector of ûN

1 which contains elements of û10,

û12, û14, û16.

Proof: We provide proofs of this proposition from two

perspectives: 1) From the SC decoding process; 2) From a

contradiction perspective with respect to the performance of

systematic polar codes.

First, let us prove this proposition from the SC decoding

process. The same reasoning in the proof of Lemma 1 can

be applied here: the LR of
∑

k∈Ai
uk is directly affected by

the decision of
∑

l∈Aj(1:N/2) ul for j = i−N/2. With Ai =

Aj(N/2 + 1 : N), it is exactly saying that the decision of
∑

l∈Aj(1:N/2) ul (from the first half of column j) affects the

decoding of the
∑

l′∈Aj(N/2+1:N/2) ul′ (from another half of

column j). Since the recursive LR calculation of uj′ (j′ ∈
Aj(N/2 + 1 : N)) involves the LR of

∑

l∈Aj(1:N/2) ul (from

the nature of the polar encoding graph), the decision of bit uj′

is therefore affected by the LR of
∑

l∈Aj(1:N/2) ul. In other

words, any error uj (j ∈ Aj(1 : N/2)) affects the decision of

the subsequent bit uj′ with j′ ∈ Aj(N/2+ 1 : N). Therefore

the errors in ûAi
are correlated.

Now let us prove the proposition from a contradiction.

Assume the errors in ûAi
are independent. For non-systematic

polar codes, we define a set At ⊂ A containing the indices of

the incorrect information bits in an error event. In the same

way, we define a set Asys,t ⊂ A containing the corresponding

indices of the information bits in error for systematic polar

codes. Let vN1 be an error indicator vector: a N -element vector

with 1s in the positions specified by the error event At and 0s

elsewhere. Let the error probability being: Pr(vm = 1) = pm.

From the independence assumption of errors, it is known that

0 ≤ pm ≤ 0.5 for information bits. Correspondingly, we set

a vector qN1 with 1s in the positions specified by Asys,t and

0s elsewhere. From the systematic encoding process, we have

qN1 = vN1 G. Correspondingly, qA = vN1 G(:,A) where G(:,A)
denotes the submatirx of G composed of the columns specified

by A. Since the frozen bits are always correctly determined,

vĀ = 0N−K
1 (note that 0N−K

1 is a zero vector with N − K
elements all being zeros). This leads to qA = vAGAA. In this

way, we convert the errors of non-systematic polar codes and

systematic polar codes to the weight of the vectors vN1 and

qN1 .

Denote the Hamming weight of the vector vN1 as wH(vN1 ).
Specifically, the element qi (i ∈ A) is one if vAi

has an odd

number of ones. With the independent assumption of errors in

ûAi
, the probability that the ith information bit x̂i is in error

is

p̃i =
1

2
−

1

2

Ki
∏

m=1

(1− 2pm) (16)

where Ki = |Ai|. The proof of (16) is given in Appendix. In

TABLE I
COUPLING EFFECT FOR N = 16 AND R = 0.5 IN A BEC CHANNEL WITH

AN ERASURE PROBABILITY OF 0.2

Column Index Coupling coefficient

10 76%

11 74%

13 74%

(16), we can order the probabilities {pm}Ki

m=1 (0 ≤ pm ≤ 0.5)

in the ascending order. Applying the Monotone Convergence

Theorem to real numbers [26], we have:

lim
Ki→∞

p̃i = lim
Ki→∞

[
1

2
−

1

2

Ki
∏

m=1

(1− 2pm)] =
1

2
(17)

Thus, the mean Hamming weight of qN1 : wH(qN1 ) = K
2 ≥

wH(vN1 ), meaning the average number of errors of the system-

atic polar codes is larger than the average number of errors of

non-systematic polar codes. This contradicts with the existing

results that systematic polar codes outperform non-systematic

polar codes. Thus, we can conclude the errors of uAi
are

dependent.

From Proposition 1, an error correlation pattern among the

errors in ûN
1 can be deduced. We call bits ûAi

the correlated

estimated bits. This says that statistically, the errors of bits ûAi

are coupled. To show this coupling, we use the same example

as the one after Proposition 1. The number of times the errors

of ûAi
(i ∈ A) happening simultaneously (denoted by Ns)

over the number of times any of the bits ûAi
in error (denoted

by Ne) is called the coupling coefficient, which is equal to

Ns/Ne. The coupling coefficients (similar to the correlation

coefficient) of bits indicated by non-zero positions of column

10, 11, and 13 is shown in Table I. It can be seen from Table

I that if there are errors in ûA10
= {û10, û12, û14, û16}, then

76% of times these bits errors happen simultaneously, resulting

in a coupling coefficient 0.76 for errors in ûA10
. The coupling

coefficients for ûA11
and ûA13

are 0.74 in Table I.

To the authors’ knowledge, there is no attempt yet to utilize

the error correlation pattern to improve the performance of

polar codes. In the next section of this paper, we propose

novel interleaving schemes to break the coupling of errors to

improve the BER performance of polar codes in concatenation

systems while still maintaining the low complexity of the SC

decoding.

IV. THE CORRELATION-BREAKING

INTERLEAVING SCHEMES

In this section we consider interleaving schemes of polar

codes (the inner code) with an outer LDPC code as an

example. The introduced schemes work for all types of outer

codes. From Proposition 1, we know the exact correlated

information bits of polar codes. The interleaving scheme is

thus to make sure that the correlated bits of the inner polar

codes come from differen LDPC blocks in the transmitter side.

In this way, the de-interleaved LDPC blocks have independent

errors. A blind interleaving (BI) (also known as direct product)

is first introduced, which breaks all bits in one LDPC block

into different polar code blocks in the interleaver. Then an



6 IEEE TRANSACTIONS ON COMMUNICATIONS

Original Input Bits

group 1

64 bits

group 2

64 bits

group 64

64 bits

1 2 ... 155 1 2 ... 1551 2 ... 155

2 2 2... 155 155 ... 1551 1 ... 1

Polar group 1 Polar group 2 Polar group 155

Grouping

LDPC

encoding

Interleaving

Polar

encoding

Fig. 4. A blind interleaving scheme with direct product (BI-DP). The block
length of the LDPC code is Nl = 155, and the code rate is 64/155. The
block length of the polar code is N = 256, and the code rate is R = 1/4.

improved BI scheme and a correlation breaking interleaving

(CBI) scheme, that only breaks the correlated bits, are pre-

sented.

In this section, we also compare the time complexity and

the required memory size of the CBI and the BI schemes. The

time complexity is in terms of the decoding delay from the

de-interleaving operation: the time from transmitting the first

outer code block to decoding the first outer code block in each

round of transmission.

A. The Blind Interleaving Schemes

In this section, the scheme of scattering all bits in a LDPC

block into different polar code blocks is introduced. The Nl

bits of one LDPC block are divided into Nl polar code blocks,

which guarantees that the received error information bits in

each LDPC block are independent as they come from different

polar code blocks during de-interleaving.

1) Direct Product Blind Interleaving: Denote c
(j)
i (1 ≤ i ≤

Nl, 1 ≤ j ≤ K) as the ith coded bit of the jth LDPC block.

Also denote u
(d)
k as the kth information bit of the dth polar

block. Bits i (c
(j)
i ) of all LDPC code blocks form the input

vector to the ith polar code encoder. The input bits of the ith
polar block are arranged in the order of the LDPC blocks:

u
(i)
j = c

(j)
i . For example, {c

(j)
1 , 1 ≤ j ≤ K} of all LDPC

blocks produce the input for the first polar block, and u
(1)
j =

c
(j)
1 , meaning that bit one of the jth LDPC block is set as the

jth input bit of polar block one. This interleaving is called the

blind interleaving with direct product (BI-DP).

We give an example in Fig. 4 where Kl = 64 and Nl = 155.

Polar code in this example has N = 256, K = 64 and a code

rate R = 1/4. Fig. 4 is an exact illustration of the BI-DP

scheme: bits one of all LDPC blocks serve as the input to

polar block one, bits two of all LDPC blocks serve as the

input to polar block two, and so on.

To compare with the subsequent improved blind interleav-

ing, define a Nl×K matrix C, that contains the elements of the

input of polar blocks. The entry of the ith row and jth column

is Ci,j = u
(i)
j . For the BI-DP scheme, Ci,j = u

(i)
j = c

(j)
i .

2) Cyclic Direct Product Blind Interleaving: One problem

with the BI-DP scheme is that for LDPC block j, all the coded

bits of it are placed as the jth input bits of all polar blocks.

For example, all the bits c
(1)
i of LDPC block one are the first

information bits of all polar blocks in the receiver side. Given

that information bits of polar codes are not equally protected,

it can happen that LDPC block j is exposed to a large amount

of errors if bit j of the polar code is a poorly protected bit

in the decoding process. An improved BI, termed cyclic DP

(BI-CDP), is thus introduced below to overcome this problem.

Denote Nl = nuK + kl, where nu and kl are the quotient

and the reminder of Nl divided by K , respectively. Define a

basic polynomial p(x) = j′xj′ (0 ≤ j′ ≤ K − 1). For the

ith polar code block (1 ≤ i ≤ nuK), the assignments of the

LDPC coded bits to this polar block can be obtained from the

i′th (i′ = i− 1) quasi cyclic shift (0 ≤ i′ ≤ nuK − 1):

p(i
′)(x) = ((j′ + ⌊i′/K⌋K)x(i′+j′))(mod K) (18)

where ‘mod’ is the modulo operator. Here the word ‘quasi’

means that it is not the traditional cyclic shift operation of

xi′p(x) because of the jump of the coefficients every K shifts.

Let m = (j′ + ⌊i′/K⌋K) + 1, q = ((i′ + j′) mod K) + 1
and l = ((m − 1) mod K) + 1. Then the i′th cyclic shifted

polynomial p(i
′)(x) carries the mth bit of the qth LDPC block

c
(q)
m , which is applied to the lth bit of polar block i = i′ + 1,

namely u
(i)
l = c

(q)
m .

This quasi-cyclic arrangement of LDPC coded bits to the

corresponding input bits of polar blocks works for the first

nuK polar blocks. However it does not work for the last kl
polar blocks because m = (j′ + nuK) + 1 > Nl when kl ≤
j′ ≤ K − 1.

There are many ways to arrange the input for the last

kl polar blocks. In the following, we propose one possible

solution. Let i′ = i − 1 = nuK + ir (nuK < i ≤ Nl and

0 ≤ ir ≤ kl − 1). For the original polynomial p(x) = j′xj′ ,

when j′ = j − 1 = ir, the i′th cyclic shift is defined as

p(i
′)(x) = i′xj′ . When j′ = j−1 6= ir, define a new parameter

j
′′

(0 ≤ j
′′

≤ K − 2) for the other K − 1 elements of the i′th
shift of p(x) (i′ = i− 1 = nuK + ir):

p(i
′)(x) =

{

i′xj′ , if j′ = ir,

(j
′′

mod kl + nuK)x(i′+j
′′

+1) mod K , otherwise.

(19)

It can be verified that the proposed arrangements assign the

remaining LDPC coded bits to the last kl polar blocks.

This arrangement can be viewed from the matrix C defined

in Sec IV-A1. Fig. 5 shows the assignments of LDPC coded

bits to polar blocks, stored by this matrix C. In this example,

Nl = 11 and K = 4. For LDPC block j (1 ≤ j ≤ 4),

the subscript of the coded bits c
(j)
i (1 ≤ i ≤ 11) are stored

in column j of the two tables. For polar block i, the input

information bits u
(i)
j are stored in the ith row of the tables.

Since the entries of the tables in Fig. 5 are the subscripts of

c
(j)
i , the subscripts of the information bits u

(i)
j are represented

by different colors: yellow is j = 1 (u
(i)
1 ), orange is j = 2,

green is j = 3, and blue is j = 4.
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(a) BI-DP

(b) BI-CDP

Fig. 5. An example of the matrix C for Nl = 11 and K = 4. The row
and column indices are the indices of polar and LDPC blocks. The entries of
one column are the indices of LDPC coded bits of that specific LDPC block.
The four colors of the background corresponding to the four positions of each
polar block.

For BI-DP, the assignments of each LDPC coded bits are

designed according to Section IV-A1. Clearly it can be seen

from the same color of columns of Fig. 5-(a) that the coded

bits of LDPC block j are assigned to the same bits (the jth

bits) of all polar blocks. The assignments of LDPC coded bits

for BI-CDP are done according to equations (18) and (19).

Take column 1 (LDPC block 1) of Fig. 5-(b) as an example.

It is shown that three coded bits (three colored yellow of the

column 1) of LDPC block one are put as the first information

bits for three polar blocks (polar block 1, 5, and 9), two coded

bits (two colored orange) are the second information bits of

polar blocks 4 and 8, three coded bits (three colored green)

are the third information bits of polar blocks 3, 7 and 11, and

three coded bits (three colored blue) are the fourth information

bits of polar blocks 2, 6 and 10. On the other hand, all eleven

coded bits of LDPC block one are the first information bits of

eleven polar blocks for the BI-DP scheme.

Overall, the improved BI-CDP can scatter the LDPC coded

bits evenly to the input of polar blocks to reduce the chance

of simultaneous errors. It is expected that the BI-CDP scheme

performing better than the BI-DP scheme.

B. The CBI Scheme

The two BI schemes in Section IV-A occupies a memory

of [Nl,K] received samples. The decoding delay of the BI

scheme is Nl × N × Ts (Ts is the symbol duration). From

Section III, we know that it is not necessary to scatter all

bits in a LDPC block into different polar blocks, since not all

bits in a polar block are correlated. The interleaving scheme

in this section is to make the correlated information bits uAi

(1 ≤ i ≤ K) of one polar block come from different LDPC

blocks and the remaining uncorrelated information bits come

from one LDPC block in the encoding process. Or in other

words, the interleaving scheme is to scatter only the correlated

information bits uAi
(1 ≤ i ≤ K) of each polar block into

different LDPC blocks and the uncorrelated information bits

of each polar block are scattered into one LDPC block in the

receiver side.

The difficulty in designing a CBI scheme is that the sets

{Ai}
K
i=1 are different for different block lengths and code

rates. They are also different for different underlying channels

for which polar codes are designed. A CBI scheme is depen-

dent on three parameters: the block length N , the code rate R,

and the underlying channel W . Let us denote a CBI scheme

as CBI(N ,R,W ) to show this dependence. A CBI(N ,R,W )

optimized for one set of (N ,R,W ) is not necessarily optimized

for another set (N ′,R′,W ′). It may not even work for the set

(N ′,R′,W ′) if N ′R′ 6= NR. In the following, we provide a

CBI scheme which works for any sets of (N ,R,W ), but not

necessarily optimal for one specific set of (N ,R,W ).

The set Ai contains the indices of the non-zero entries of

column i ∈ A. First, the K = |A| columns of G are extracted,

forming a submatrix G(:,A). Divide this submatrix further

as: G(:,A) = [GĀA GAA]. Since the submatrix GĀA = 0

from Corollary 1, it is only necessary to analyze the submatrix

GAA. If a CBI needs to look at each individual set Ai, then a

general CBI is beyond reach. However, we can simplify this

problem by dividing the indices of information bits only into

two groups: the correlated bits indices Ac and the uncorrelated

bits indices Āc.

Let ωi denote the Hamming weight of row i of GAA. The

following proposition can be used to find the sets Ac and Āc.

Proposition 2. For the submatrix GAA, define Acs = {i |1 ≤
i ≤ K and ωi > 1}, and Ācs = {j | 1 ≤ j ≤ K and ωj = 1}.

The corresponding sets of Acs and Ācs with respect to the

matrix G are the sets Ac and Āc, respectively.

Proof: First, let us bear in mind that the submatrix GAA

is a lower triangular matrix as discussed in Section II-B. This

proposition is equivalent to the following assignment:

{

i ∈ Ācs, if ωi = 1,

i ∈ Acs, if ωi > 1.
(20)

For ωi = 1, there is only one non-zero entry Gi,i = 1
for row i. Let Kc = |Acs| and Kuc = |Ācs|. Denote the

submatrix formed by the rows of GAA indicated by Ācs as

GAA(Ācs, :). Then each row of the submatrix GAA(Ācs, :)
has Hamming weight one. Extract the columns specified by

Ācs of GAA(Ācs, :) to obtain a matrix denoted as Guc. Similar

to the process of extracting GAA from G, the extraction of

rows and columns (indicated by Ācs) from GAA results in a

final Kuc ×Kuc identity matrix Guc = IKuc
.

According to Proposition 1, the errors in ûAi
(ûAc

) are

coupled. Now that each column of Guc = IKuc
has Hamming
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Fig. 6. A general correlation-breaking interleaving scheme. Here the set
Ac consists of the indices of the correlated bits and the set Āc is the
complementary set of Ac.

weight one, the errors contained in ûĀc
are not coupled as

indicated by Proposition 1.

We use the same example as before (the one after Propo-

sition 1) to show how to use Proposition 2 to find the sets

Ac and Āc. With Proposition 2, we can easily find that

Acs = {4, 6, 7, 8} for the submatrix GAA. Relative to the

matrix G16, this set is Ac = {12, 14, 15, 16}. The uncorrelated

set is thus Āc = {8, 10, 11, 13}.

With the sets Ac and Āc obtained for any (N ,R,W ), we

can devise a CBI scheme. Fig. 6 is a general CBI scheme. As

in Section IV-A2, let Nl = nuK + kl and Kn = Kc + 1. For

the general CBI scheme, the number of polar blocks, np, to

transmit Kn LDPC blocks, is expressed as:

np =

{

(nu + 1)Kn, if kl = 0 or kl > Kn,

nuKn + kl, otherwise.
(21)

The assignment of LDPC coded bits to the polar blocks are

similarly done as the BI-CDP scheme, except that there are

coded bits which are put into the uncorrelated positions of the

same polar block. Let 0 ≤ i′ ≤ np − 1 and 0 ≤ j′ ≤ Kn − 1.

The general rules to determine the elements of the matrix C
are the following:

• Consider elements of C within the first nuKn rows.

When j′ = i′ mod Kn, Ci,j contains Kuc bits from

LDPC block j = (j′+1). These bits are put into positions

Āc of polar block i = i′ + 1. For the remaining Kc

correlated information bits of polar block i, it takes coded

bits from other different Kc LDPC blocks to put into

correlated positions Ac in the same fashion as the BI-

CDP scheme.

• Consider the rest of the rows (for the remaining np −
nuKn polar blocks). When j′ = i′ mod Kn, Ci,j con-

tains the remaining bits (smaller than Kuc) from LDPC

block j = (j′ +1). These bits are also put into positions

Āc of polar block i = i′ + 1. Polar block i′ takes

coded bits from other LDPC blocks for its correlated

information bits, similarly to the arrangement of the BI-

CDP scheme.

Two examples are given in Table II and Table III to explain

the assignments for the two cases of (21): Table II is an

example of the second case of (21) and Table III is an example

of the first case of (21).

A polar code (32,16) concatenated with a LDPC code (21,8)

shown in Table II is the example when kl < Kn. The corre-

lated set Ac = {16, 24, 26, 27, 28, 29, 30, 31, 32}. Therefore

Kc = |Ac| = 9, Kn = Kc + 1 = 10, nu = ⌊Nl/K⌋ = 1,

and kl = 5 < Kn. To transmit Kn = 10 LDPC blocks,

np = nuKn + kl = 15 polar blocks are required. In Table

II, the top row contains indices of the LDPC blocks, the first

column is the indices of the polar blocks, and the entries of this

table represent the indices of encoded bits of LDPC blocks.

From Table II, for polar block one, bit 1 to bit 7 are taken

from LDPC block one, and the other 9 bits are bits 8, 9, ..., 16
from LDPC blocks two to ten, respectively. The 7 bits from

LDPC block one are placed at the uncorrelated positions Āc

of polar block one, and the other 9 bits from nine LDPC

blocks are arranged at the correlated positions Ac of polar

block one. The other polar blocks (polar block two to polar

block ten) follow the same fashion in collecting the input bits.

These first nuKn rows follow the same cyclic assignments

of LDPC coded bits to the inputs of polar blocks as the BI-

CDP scheme. The remaining polar blocks (from polar block

eleven to polar block fifteen) collect the remaining bits of

LDPC blocks. For example, although polar block eleven can

take Kuc = 7 uncorrelated bits from LDPC block one, there

are not enough bits left from LDPC block one: only bits c17
to c21 are left. The assignments of the correlated positions of

polar block eleven follows exactly that of the BI-CDP scheme.

Table III shows another example when kl > Kn. In this

example, the polar code (32,8) has an Ac = {28, 30, 31, 32}
with Kc = 4 and the LDPC is a (22,8) code. The parameters

are kl = 6 and Kn = Kc + 1 = 5. The total polar blocks

np = nu ×Kn = 3 × 5 are used to transmit Kn = 5 LDPC

blocks. For both examples, there are 0s at the left low corner,

which means that there are polar positions which are not used.

These positions are wasted which are the cost of the universal

CBI design.

C. Complexity Analysis

For the CBI scheme, the interleaving requires a memory

to store the decoded LR values from np polar blocks in

order to do the de-interleaving. The memory size is therefore

[np,K]. The decoder needs to wait np polar blocks to decode

Kn LDPC blocks. The decoding delay of the outer code is

therefore np × N × Ts, where Ts is the symbol duration in

seconds. For the BI scheme, the memory size is [Nl,K] and

the decoding delay is Nl ×N × Ts.

V. SIMULATION RESULTS

In this section, simulation results are provided to verify the

performance of BI-DP, BI-CDP, and the CBI scheme. The first

example we take is the same as the BI scheme in Fig. 4. The

LDPC codes used in this section is the (155,64) MacKay code

[27], where the code length is Nl = 155 and the information

bit length is Kl = 64. The polar code is (256,64). The
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TABLE II
THE CBI SCHEME FOR LDPC (21,8) AND POLAR (32,16). THE TOP ROW CONTAINS INDICES OF LDPC BLOCKS AND THE FIRST COLUMN IS THE

INDICES OF POLAR BLOCKS. THE ENTRIES OF THE TABLE ARE BIT INDICES OF LDPC BLOCKS.

P
P
P
P
PP

Polar
LDPC

1 2 3 4 5 6 7 8 9 10

1 1 : 7 8 9 10 11 12 13 14 15 16

2 16 1 : 7 8 9 10 11 12 13 14 15

3 15 16 1 : 7 8 9 10 11 12 13 14

4 14 15 16 1 : 7 8 9 10 11 12 13

5 13 14 15 16 1 : 7 8 9 10 11 12

6 12 13 14 15 16 1 : 7 8 9 10 11

7 11 12 13 14 15 16 1 : 7 8 9 10

8 10 11 12 13 14 15 16 1 : 7 8 9

9 9 10 11 12 13 14 15 16 1 : 7 8

10 8 9 10 11 12 13 14 15 16 1 : 7

11 17 : 21 17 18 19 20 21 17 18 19 20

12 0 18 : 21 17 18 19 20 21 17 18 19

13 0 0 19 : 21 17 18 19 20 21 17 18

14 0 0 0 20 : 21 17 18 19 20 21 17

15 0 0 0 0 21 : 21 17 18 19 20 21

TABLE III
THE CBI SCHEME FOR LDPC (22,8) AND POLAR (32,8). THE TOP ROW CONTAINS INDICES OF LDPC BLOCKS AND THE FIRST COLUMN IS THE

INDICES OF POLAR BLOCKS. THE ENTRIES OF THE TABLE ARE BIT INDICES OF LDPC BLOCKS.

P
P
P
P
PP

Polar
LDPC

1 2 3 4 5

1 1 : 4 5 6 7 8

2 8 1 : 4 5 6 7

3 7 8 1 : 4 5 6

4 6 7 8 1 : 4 5

5 5 6 7 8 1 : 4

6 9 : 12 13 14 15 16

7 16 9 : 12 13 14 15

8 15 16 9 : 12 13 14

9 14 15 16 9 : 12 13

10 13 14 15 16 9 : 12

11 17 : 20 17 18 19 20

12 21 18 : 21 17 18 19

13 22 22 19 : 22 17 18

14 0 0 0 20 : 22 17

15 0 0 0 0 21 : 22

overall code rate of the LDPC(Nl,Kl)+CBI+POLAR(N ,K)

concatenation system is Kl/Nl × R = 0.1. The underlying

channel is the AWGN channel. The construction of polar code

is based on [3], which produces the set A. Then the submatrix

GAA is formed from the generator matrix G. Based on the

submatrix GAA and Proposition 2, for polar code (256,64),

the correlated bits indices is calculated to be Ac (Kc = 38)

and the uncorrelated bits indices Āc (Kuc = 26) are also

obtained.

In this example, the occupied memory size of the CBI

scheme is [105, 64], smaller than [155, 64] of the two BI

schemes. The decoding delay of the CBI scheme is 105×256
symbols, still smaller than 155 × 256 symbols of the BI

schemes.

The performance of the BI-DP (dashed line with squares)

and BI-CDP (solid line with squares) is shown in Fig. 7. At

a BER = 10−5, the improved BI-CDP scheme has a 0.4 dB

advantage over the BI-DP scheme. To compare with the CBI

scheme (the solid line with circles), two other schemes are

also shown in Fig. 7: 1) the performance of the polar code

(SC decoding) directly concatenated with the LDPC code (no

interleaving being performed, denoted by the solid line with

triangles), with a legend of LDPC(155,64)+POLAR(256,64)-

SC; 2) the performance of the direct concatenation but

with the polar code employing the belief propagation (BP)

decoding (denoted by the solid line with asterisks), with

a legend of LDPC(155,64)+POLAR(256,64)-BP. At a BER

= 10−4, the LDPC(155,64)+CBI+POLAR(256,64)-SC system

achieves 1.4 dB and 1.2 dB gains over the direct con-

catenation systems LDPC(155,64)+POLAR(256,64)-SC and

LDPC(155,64)+POLAR(256,64)-BP, respectively.

Compared with the BI-DP scheme, the CBI scheme requires

only an additional 0.05 dB of Eb/N0 to achieve the BER at

10−5. Also, the CBI scheme requires a memory size Nl/np =
1.5 times smaller than that of the BI-DP scheme. At the same

BER level, the BI-CDP scheme outperforms both the BI-DP

and the CBI scheme, requiring 0.4 dB less to achieve this

BER.

The proposed CBI scheme can also work with other outer

codes, such as BCH codes. Fig. 8 shows the result of the polar

code (256,64) with a BCH code (127,57) where the 127 and

57 are the code length and the number of information bits of

BCH codes in one code block, respectively. It can be seen

from Fig. 8 that the CBI scheme employing BCH code as an
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Fig. 7. The BER performance of polar code (256,64) concatenated with a
LDPC code in AWGN channels. The LDPC code is the (155,64) MacKay
code.

E
b
/N

0
 (dB)

5.5 6 6.5 7 7.5

B
E

R

10-6

10-5

10-4

10-3

10-2
BCH(127,57)+POLAR(256,64)-SC
BCH(127,57)+CBI+POLAR(256,64)-SC

Fig. 8. The BER performance of the concatenation scheme in AWGN
channels. The BCH code is (127, 57) and the polar code is (256, 64).

outer code has a 0.7 dB gain over the direct concatenation

scheme at a BER = 10−4.

VI. CONCLUSION

In this paper, a correlation pattern of bit errors of polar

codes with the SC decoding are studied. Based on the stud-

ies, BI-DP, BI-CDP, and CBI schemes are proposed to de-

correlate the coupled bit errors, while still maintaining the

low complexity of the SC decoding of polar codes. The BI-

CDP scheme cyclicly assigns the encoded bits from the outer

code to the input of the inner encoder. As a result, the BI-

CDP scheme enjoys a 0.4 dB gain over the BI-DP scheme

for the presented results in the paper. The proposed novel

CBI scheme has a much better performance than the direct

concatenation schemes. Compared with the BI-DP scheme,

the CBI scheme also achieves a comparable BER performance

while requiring a smaller memory size and a shorter decoding

delay. Simulation results verify the theories and the proposed

schemes in the paper.

APPENDIX

PROOF OF EQUATION(16)

Proof: Given a sequence of M independent binary digits

vM1 where the probability Pr(vm = 1) = pm, then the

probability that vM1 contains an odd number of 1’s (denoted

by PM ) is

PM =
1

2
−

1

2

M
∏

m=1

(1− 2pm). (22)

We use induction to prove it. First, let M = 1, then P1 =
pm = 1

2 − 1
2

∏1
m=1(1 − 2pm). Next assume when M = km,

(22) holds. That is: Pkm
= 1

2 − 1
2

∏km

m=1(1 − 2pm). Now let

us prove that when M = km + 1, (22) still holds:

Pkm+1 =
1

2
−

1

2

km+1
∏

m=1

(1− 2pm). (23)

Starting from Pkm
, Pkm+1 can be derived as the following:

Pkm+1 = pkm+1 × (1− Pkm
) + Pkm

× (1− pkm+1)

= pkm+1 − 2× Pkm
× pkm+1 + Pkm

= pkm+1 ×

km
∏

m=1

(1− 2pm) +
1

2
−

1

2

km
∏

m=1

(1 − 2pm).

Let us extend the right-hand side of (23) as the following:

1

2
−

1

2

km+1
∏

m=1

(1− 2pm)

=
1

2
−

1

2

km
∏

m=1

(1− 2pm)× (1− 2pkm+1)

= pkm+1 ×

km
∏

m=1

(1− 2pm) +
1

2
−

1

2

km
∏

m=1

(1 − 2pm).

which is equal to the one derived from Pkm
. Therefore,

equation (16) is proven from the induction.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE

Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.
[2] ——, “Systematic polar coding,” IEEE Commun. Lett., vol. 15, no. 8,

pp. 860–862, Aug. 2011.
[3] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.

Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.
[4] R. Mori and T. Tanaka, “Performance of polar codes with the construc-

tion using density evolution,” IEEE Commun. Lett., vol. 13, no. 7, pp.
519–521, Jul. 2009.

[5] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans.

Commun., vol. 60, no. 11, pp. 3221–3227, Nov. 2012.
[6] D. Wu, Y. Li, and Y. Sun, “Construction and block error rate analysis

of polar codes over AWGN channel based on Gaussian approximation,”
IEEE Commun. Lett., vol. 18, no. 7, pp. 1099–1102, Jul. 2014.

[7] C. Zhang and K. K. Parhi, “Low-latency sequential and overlapped
architectures for successive cancellation polar decoder,” IEEE Trans.

Signal Process., vol. 61, pp. 2429–2441, May 2013.
[8] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. Gross, “Fast polar

decoders: Algorithm and implementation,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, May 2014.



SUBMITTED PAPER 11

[9] C. Zhang and K. K. Parhi, “Latency analysis and architecture design of
simplified SC polar decoders,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 61, pp. 115–119, Feb. 2014.

[10] E. Arıkan, “A performance comparison of polar codes and reed-muller
codes,” IEEE Commun. Lett., vol. 12, no. 6, pp. 447–449, Jun. 2008.

[11] N. Hussami, S. Korada, and R. Urbanke, “Performance of polar codes
for channel and source coding,” in Proc. IEEE Int. Symp. Inform. Theory

(ISIT), Jun. 2009, pp. 1488–1492.
[12] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.

Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[13] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding

of polar codes,” IEEE Trans. Commun., vol. 61, no. 8, pp. 3100–3107,
Aug. 2013.

[14] A. Eslami and H. Pishro-Nik, “A practical approach to polar codes,” in
Proc. IEEE Int. Symp. Inform. Theory (ISIT), Jul. 2011, pp. 16–20.

[15] J. Guo, M. Qin, A. G. i Fabregas, and P. H. Siegel, “Enhanced belief
propagation decoding of polar codes through concatenation,” in Proc.

IEEE Int. Symp. Inform. Theory (ISIT), Jun. 2014, pp. 2987 – 2991.
[16] M. Bakshi, S. Jaggi, and M. Effros, “Concatenated polar codes,” in Proc.

IEEE Int. Symp. Inform. Theory (ISIT), Jun. 2010, pp. 918–922.
[17] T. Wang, D. Qu, and T. Jiang, “Parity-check-concatenated polar codes,”

IEEE Commun. Lett., vol. 20, no. 12, pp. 2342–2345, Dec. 2016.
[18] J. Park, I. Kim, and H. Song, “Construction of parity-check-concatenated

polar codes based on minimum hamming weight codewords,” Electron.

Lett., vol. 53, no. 14, pp. 924–926, Jul. 2017.
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