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Abstract The coronavirus disease 2019 (COVID-19) is raging across the world. The radiomics, which

explores huge amounts of features from medical image for disease diagnosis, may help the screen of the

COVID-19. In this study, we aim to develop a radiomic signature to screen COVID-19 from CT images.

We retrospectively collect 75 pneumonia patients from Beijing Youan Hospital, including 46 patients with

COVID-19 and 29 other types of pneumonias. These patients are divided into training set (n = 50) and test

set (n = 25) at random. We segment the lung lesions from the CT images, and extract 77 radiomic features

from the lesions. Then unsupervised consensus clustering and multiple cross-validation are utilized to select

the key features that are associated with the COVID-19. In the experiments, while twenty-three radiomic

features are found to be highly associated with COVID-19, four key features are screened and used as the

inputs of support vector machine to build the radiomic signature. We use area under the receiver operating

characteristic curve (AUC) and calibration curve to assess the performance of our model. It yields AUCs

of 0.862 and 0.826 in the training set and the test set respectively. We also perform the stratified analysis

and find that its predictive ability is not affected by gender, age, chronic disease and degree of severity.

In conclusion, we investigate the value of radiomics in screening COVID-19, and the experimental results

suggest the radiomic signature could be a potential tool for diagnosis of COVID-19.
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1 Introduction

The novel coronavirus disease 2019(COVID-19) outbreak in Wuhan in the end of 2019 [1, 2]. It has

rapidly spread into other provinces in China and other countries [3, 4]. The COVID-19 causes typical

viral pneumonia with severe acute respiratory syndrome, with a much higher mortality rate than the

flu [5, 6]. During the screen of the COVID-19, it is difficult to discriminate the COVID-19 from other

types of pneumonias such as flu-related pneumonia, bacterial pneumonia, and mycoplasma pneumonia [7].

The mildly ill patients were widely found in the COVID-19 infected patients, making the screening even

more challenging [8, 9].
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In the clinical practice, the nucleic acid testing is used for screening of the COVID-19 from the sputum

or other clinical samples of suspected patients [10, 11]. However, the false negative cases of nucleic acid

testing lead to lots of omission diagnosis cases, which raises the risk of spreading [12]. The CT imaging is

also applied for the diagnosis of COVID-19 in patients with pneumonia [13,14]. The radiological finding,

i.e., ground-glass opacity, is the typical symptoms on CT [15, 16]. However, the radiological finding is a

subjective evaluation, which relies on the diagnostic experience of the radiologist. Meanwhile, progression

of the COVID-19 demonstrates different radiological symptom [16]. Therefore, a rapid quantitative

screening method will be helpful for the screening of COVID-19.

Radiomics, a quantitative analysis technology based on medical imaging, has been widely used in the

oncology research [17–19]. Previous radiomics studies showed that the quantitative radiomic features

could represent the changes in pathology and gene level, and thus had encouraging performance in cancer

diagnosis, treatment outcome prediction, and prognosis prediction [20–23]. Besides application in cancer,

radiomics has also been used in the heart diseases, such as hypertrophic cardiomyopathy [24] and coronary

heart disease [25]. Furthermore, it has also been applied to differentiate primary progressive pulmonary

tuberculosis from community-acquired pneumonia in children [26]. Radiomics might provide a potential

tool for screening of COVID-19. To our knowledge, there is no reported research about the radiomics in

COVID-19.

In this retrospective study, we intend to apply CT radiomics in the screening of the COVID-19. We

focus on discriminating the pneumonia caused by COVID-19 from other pneumonias. The remainder of

this paper is organized as follows. We describe the dataset and method in Section 2. In Section 3, we

present the results of our method and the stratification analysis. In Section 4, we discuss the value of

our method to the clinic, and the future research directions.

2 Methods

The radiomics workflow of this study includes retrospective data collection, lung lesion segmentation,

image preprocessing, feature extraction, feature selection and signature construction, and performance

evaluation.

2.1 Data set

Ethical approval is obtained for this retrospective analysis, and the informed consent requirement is

waived. The data is collected from Beijing Youan Hospital. The COVID-19 pneumonias were collected

between December 25, 2019 and February 5, 2020. The other types of pneumonias were collected before

October, 2019. There are 46 COVID-19 pneumonias and 29 other types of pneumonias enrolled in

this study. The exclusion criteria include (a) substantial motion artifacts in CT images; (b) small or

inconspicuous lesions that could not be identified by CT; (c) deficiency of baseline clinic pathological

data; (d) large interval (> 1 week) between CT scan and pathological diagnosis.

All patients are randomly divided into a training set (n = 50) and a test set (n = 25).

2.2 Image acquisition and segmentation

Chest CT examinations are performed for all patients with a 256-section scanner (Philips Brilliance

iCT; Dutch Philips). The CT protocol is as follows: 120 kV; automatic tube current (100–400 mA);

slice thickness, 0.9–5 mm; collimation, 0.625 mm; pitch, 0.914; matrix, 512 × 512; breath hold at full

inspiration. The images are photographed at lung (window width, 1500 HU; window level, −500 HU) and

mediastinal (window width, 350 HU (Hounsfield Units); window level, 50 HU) settings. The scanning

range is from the thorax entrance to the posterior costal angle.

We retrieve CT images from the picture archiving and communication system (PACS). To reduce the

impact from the different CT slice thicknesses, the thin-slice scan is transformed into the simulated thick-

slice scan by fusing the adjacent slices. The lung region is automatically extracted by a threshold of HU
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= −300. Then, the slice with the largest lesion area is selected, and the 2-dimensional region of interest

(ROI) covering the entire lesion area is segmented manually using ITK-SNAP software (version 3.6.0 1)).

2.3 Radiomic feature extraction

We use the bicubic resampling to standardize the image scale in the slice, resulting in a pixel size of 0.5 mm

× 0.5 mm. Firstly, 3 morphological features are calculated based on the ROI. Then, 14 intensity-based

statistical features, 12 gray-level co-occurrence matrix (GLCM) features and 11 gray-level run-length

matrix (GLRLM) features are generated from the original CT image and the smoothed image respectively.

We refer to the image biomarker standardisation initiative (IBSI) to standardize the feature extraction

algorithms. The radiomic features are normalized to z-scores based on the parameters calculated in the

training set. The feature extraction is performed in MATLAB 2017a (Mathworks, Natick, MA, USA)

using an in-house developed tool-box.

2.4 Radiomic signature building

The training set is utilized for feature selection and signature building. Firstly, we implement the consen-

sus clustering, which is an unsupervised process widely-used in sample grouping, to reduce redundancy of

the radiomic feature set. We increase the cluster number from two. For each cluster number, the feature

set is bootstrapped 10000 times with a sampling proportion of 80%, and the hierarchical clustering is

implemented repeatedly to obtain the consensus indexes of features. The distance metric is set to (1-

Spearman correlation). In each cluster, the feature yielding the highest intra-cluster average consensus

index is identified as the medoid feature. The similarities between it and other intra-cluster features are

estimated using the Spearman correlation, which are called the intra-cluster correlation coefficients. In

this study, the cluster number making the intra-cluster correlation coefficients of all the clusters larger

than 0.8 is selected. Then, we construct the support vector machine (SVM) with radial basis function

kernel using the medoid features as the candidate inputs. To reduce the potential risk of overfitting, we

conduct a forward selection step to determine the finial combined features whose scale is limited within

1/5 of the number of patients in the smallest group. The evaluation criterion is set to the average accu-

racy in multiple 3-fold cross-validation. The optimal hype-parameters of SVM (i.e., the penalty factor

and the kernel function parameter) are also selected. Finally, based on the whole training set, the SVM

model is trained as the radiomic signature.

2.5 Statistical analysis

We utilize the radiomic heatmap, in which the unsupervised clustering is implemented on the radiomic

features and the patients respectively, to identify the obvious radiomic expression patterns and to reveal

the association between the patterns and the pneumonia types. Univariate analysis is used to assess the

relationship between patients of different sets. Differences between the groups are assessed using the

independent t-test or Mann-Whitney U test for continuous variables and Fisher’s exact test or chi-square

test for categorical variables. Receiver-operating characteristic (ROC) curves are plotted for the features

and the radiomic signature to assess their predictive performances and are compared using the Delong

test. The area under the curve (AUC) of the ROC curve is obtained. The calibration curve is plotted

to assess the calibration of the radiomic signature and accompanied by the Hosmer-Lemeshow test. The

stratification analysis is presented on gender, age, with/without chronic disease and degree of severity to

evaluate the association of radiomic signature with COVID-19 in different clinical subgroups.

1) www.itksnap.org.

www.itksnap.org
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Table 1 Characteristics of patients in the training and test sets

Characteristics Total Training set Test set

Age (mean±SD, years) 47.8±20.2 46.2±20.3 51.1±19.9

Gender (male/female, No.) 40/35 26/24 14/11

Pneumonias type (COVID-19/other types, No.) 46/29 30/20 16/9
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Figure 1 (Color online) Radiomic heatmap on the overall set. Unsupervised clustering of patients (n = 75) and radiomics

features (n = 77) reveal clusters of patients with similar radiomic expression patterns.

3 Experimental results

3.1 Clinical characteristics of the patients

Demographic data in the training and test sets are listed in Table 1. The median (range) ages of the

two sets are 45 (3–89) years and 56 (1–86) years respectively, and the proportion of females is 48.0% and

44.0% respectively. There is no significant difference in age or gender between the two sets (p-values =

0.322 and 0.935).

3.2 Feature selection and radiomic signature building

We evaluate the predictive ability of the radiomic features based on univariate analysis, and find that

23 features yield significant differences between COVID-19 and other types of pneumonias with p-values

< 0.05. Meanwhile, significant differences of radiomic expression between the two groups are revealed in

the radiomic heatmap (Figure 1), indicating there are intrinsic relations between CT phenotype of lesion

and the pneumonias type.

In the consensus clustering step, 17 distinct clusters are obtained respectively (Figure 2). We retain

the medoid features, which are described in Table 2, to obtain the candidate feature set for building

radiomic signature. To control for overfitting, these features are further reduced in the forward selection

step combined with the multiple cross-validation. The best SVM model, which achieves an average accu-
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Figure 2 Results of consensus clustering analysis for radiomic features. The curve depicts the minimum Spearman

correlation coefficient between the medoid features with their intra-cluster features.

Table 2 Features and coefficients of the radiomic signaturea)

Name Group Data AUC

S GLRLM GLN GLRLM feature S 0.633

O GLCM Contrast GLCM feature O 0.577

S I Mean Intensity-based statistical feature S 0.552

O I Krutosis Intensity-based statistical feature O 0.508

S I Range Intensity-based statistical feature S 0.605

O GLCM Variance GLCM feature O 0.728

O I Minimum Intensity-based statistical feature O 0.538

S GLRLM LGLRE GLRLM feature S 0.558

S I Krutosis Intensity-based statistical feature S 0.607

S I Skewness Intensity-based statistical feature S 0.582

O GLCM Energy GLCM feature O 0.628

O GLRLM LRLGLE GLRLM feature O 0.487

S GLCM Cluster shade GLCM feature S 0.605

O GLRLM RP GLRLM feature O 0.490

O GLRLM SRLGLE GLRLM feature O 0.528

S GLRLM SRLGLE GLRLM feature S 0.518

S GLRLM LRHGLE GLRLM feature S 0.513

a) AUC is calculated based on the training set. O: the original CT images; S: the smoothed images; I: intensity-based

statistical feature; GLN: gray level non-uniformity; LGLRE: low gray level run emphasis; LRLGLE: long run low gray level

emphasis; RP: run percentage; SRLGLE: short run low gray level emphasis; LRHGLE: long run high gray level emphasis.

racy of 0.820, is constructed based on four selected features, i.e., O GLCM Energy, O GLCM Contrast,

S GLRLM SRLGLE and O GLCM Variance, and is used as the radiomic signature.

3.3 Predictive performance of radiomic signature

Distributions of the radiomic signature scores and pneumonias types in the training set and test set are

shown in Figure 3. The radiomic signature shows powerful predictive ability both training set and test set

with AUCs of 0.862 (95% CI, 0.756–0.967) and 0.826 (95% CI, 0.655–0.998) respectively (Figure 4(a)).

The Delong test reveals that the difference is not statistically significant between AUCs on the two sets

with p-values = 0.733. The calibration curves demonstrate that the predicted probability of COVID-19

obtained from the radiomic signature matches the frequency of actual observation (Figure 4(b)). The

results of Hosmer-Lemeshow test (p-values = 0.356 and 0.460 on training set and test set respectively)

suggest there is no significant departure between the calibration curves and the diagonal line, which

represents the perfect prediction.
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Figure 3 (Color online) Bar plot of the radiomic signature scores for patients with COVID-19 and other pneumonias

types in the (a) training and (b) test sets.
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Figure 4 (Color online) ROC curves (a) and calibration curves (b) of the radiomic signature in each set.

We perform stratification analysis on the subgroups of gender, age, with/without chronic disease

and degree of severity based on the whole patients. We use the ROC curve and AUC to evaluate

the performance of radiomic signature on these subpopulations. The results of Delong test imply its

generalization on various kinds of patients (all p-values > 0.05) (Figure 5).

4 Conclusion

In conclusion, the CT radiomics for diagnosis of COVID-19 is considered for the first time. The experi-

mental results have demonstrated that many radiomic features from the pneumonia are highly associated

with the infection of COVID-19. In addition, the model based on these features could well discrimi-

nate COVID-19 pneumonia from other pneumonias such as flu pneumonia, bacterial pneumonia, and

mycoplasma pneumonia.

Although our results are encouraging, there are still some limitations of our study. Our preliminary

study is based on data from a single hospital. Further large-scale validation from multiple hospitals and

multiple regions should be performed. Meanwhile, as the COVID-19 patients could have different progress
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Figure 5 (Color online) ROC curves of radiomic signature for each subgroup stratified by gender (a), age (b), with/without

chronic disease (c) and degree of severity (d).

and treatment outcomes, the quantitative models which facilitate the identification of finer subtypes and

the prediction of prognosis would be very valuable for improving the clinical management. Besides, 2D

ROI and 2D radiomic features are used during our analysis. In the future, we will introduce 3D radiomic

features to further improve the performance of our model.

Acknowledgements This work was supported by National Key R&D Program of China (Grant Nos. 2017YFC1308700,

2017YFA0205200, 2017YFC1309100, 2017YFA0700401), National Natural Science Foundation of China (Grant Nos. 819300-

53, 91959130, 81971776, 81771924, 81930053, 81227901).

References

1 Chan J F W, Yuan S, Kok K H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus

indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395: 514–523

2 Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. New Engl J Med,

2020, 382: 727–733

3 Paules C I, Marston H D, Fauci A S. Coronavirus infections-more than just the common cold. JAMA, 2020, 323:

707–708

4 Holshue M L, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. New Engl J

Med, 2020, 382: 929–936

5 Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus

pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395: 507–513

6 Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumo-

nia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respiratory Med, 2020. doi:

10.1016/S2213-2600(20)30079-5

7 Rodriguez-Morales A J, Cardona-Ospina J A, Gutierrez-Ocampo E, et al. Clinical, laboratory and imaging features

of COVID-19: a systematic review and meta-analysis. 2020. doi: 10.20944/preprints202002.0378.v1

8 Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected

pneumonia in Wuhan, China. JAMA, 2020, 323: 1061

https://doi.org/10.1016/S0140-6736(20)30154-9
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1001/jama.2020.0757
https://doi.org/10.1056/NEJMoa2001191
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1001/jama.2020.1585


Fang M J, et al. Sci China Inf Sci July 2020 Vol. 63 172103:8

9 Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.

Lancet, 2020, 395: 497–506

10 Corman V M, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR.

Eurosurveillance, 2020, 25: 2000045

11 Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus

origins and receptor binding. Lancet, 2020, 395: 565–574

12 Lee E Y P, Ng M Y, Khong P L. COVID-19 pneumonia: what has CT taught us? Lancet Infect Dis, 2020, 20: 384–385

13 Pan F, Ye T, Sun P, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus

(COVID-19) pneumonia. Radiology, 2020. doi: 10.1148/radiol.2020200370

14 Xu X, Yu C, Zhang L, et al. Imaging features of 2019 novel coronavirus pneumonia. Eur J Nucl Med Mol Imag, 2020,

47: 1022–1023

15 Fang Y, Zhang H, Xu Y, et al. CT manifestations of two cases of 2019 novel coronavirus (2019-nCoV) pneumonia.

Radiology, 2020, 295: 208–209

16 Shi H H, Han X Y, Jiang N C, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan,

China: a descriptive study. Lancet Infect Dis, 2020, 20: 425–434

17 Dong D, Zhang F, Zhong L Z, et al. Development and validation of a novel MR imaging predictor of response to

induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy

(NCT01245959). BMC Med, 2019, 17: 190

18 Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using

advanced feature analysis. Eur J Cancer, 2012, 48: 441–446

19 Dong D, Tang L, Li Z Y, et al. Development and validation of an individualized nomogram to identify occult peritoneal

metastasis in patients with advanced gastric cancer. Ann Oncology, 2019, 30: 431–438

20 Bi W L, Hosny A, Schabath M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications.

CA Cancer J Clin, 2019, 69: 127–157

21 Song J, Shi J, Dong D, et al. A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC

patients with EGFR-TKI therapy. Clin Cancer Res, 2018, 24: 3583–3592

22 Zhang L, Chen B, Liu X, et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation

in non-small cell lung cancer. Translational Oncology, 2018, 11: 94–101

23 Peng H, Dong D, Fang M J, et al. Prognostic value of deep learning PET/CT-based radiomics: potential role for future

individual induction chemotherapy in advanced nasopharyngeal carcinoma. Clin Cancer Res, 2019, 25: 4271–4279

24 Cheng S, Fang M, Cui C, et al. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomy-

opathy patients with systolic dysfunction: preliminary results. Eur Radiol, 2018, 28: 4615–4624
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