Skip to main content
Log in

Synthesis-free directional modulation for retrodirective frequency diverse array

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Combination of directional modulation (DM) and frequency diverse array (FDA) provides a novel opportunity for enabling physical layer security because of the enhanced ability of distance resolution. However, in the existing studies, the time-varying nature of the FDA pattern is usually ignored. In this paper, a modified model of FDA-DM is proposed, in which the ignored time factor in the previous studies is taken into consideration for providing a new and more accurate perspective on evaluating the security of FDA-DM. Furthermore, we reveal that FDA-DM can achieve angle-dependent and directional-time-coupled-dependent security. After that, based on the retrodirective FDA (RFDA) with a new structure, a novel synthesis-free FDA-DM scheme is proposed for both overcoming the limitations of the FDA-DM scheme and allowing self-tracking the position of the pilot signal without any prior knowledge. Meanwhile, a new set of nonlinear frequency offsets, defined as rearranged linear frequency offsets (RLFOs), is also proposed for both combining the advantages of the linear/nonlinear frequency offsets and bringing conveniences to practical implementation. In addition, the closed-form expression of the average signal-to-artificial-noise-ratio (SANR) is given out for evaluating the security performance of the proposed scheme. Finally, numerical results are presented to verify both the accuracy of the proposed theoretical analysis and the superiority of the RFDA-DM scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daly M P, Bernhard J T. Beamsteering in pattern reconfigurable arrays using directional modulation. IEEE Trans Antenn Propagat, 2010, 58: 2259–2265

    Google Scholar 

  2. Daly M P, Daly E L, Bernhard J T. Demonstration of directional modulation using a phased array. IEEE Trans Antenn Propagat, 2010, 58: 1545–1550

    Google Scholar 

  3. Shi H, Alan T. Direction dependent antenna modulation using a two element array. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, 2011. 812–815

  4. Shi H, Tennant A. Secure physical-layer communication based on directly modulated antenna arrays. In: Proceedings of Loughborough Antennas Propagation Conference (LAPC), Loughborough, 2012. 1–4

  5. Liu F, Wang L, Xie J. Directional modulation technique for linear sparse arrays. IEEE Access, 2019, 7: 13230–13240

    Google Scholar 

  6. Ding Y, Fusco V F. A vector approach for the analysis and synthesis of directional modulation transmitters. IEEE Trans Antenn Propagat, 2014, 62: 361–370

    Google Scholar 

  7. Daly M P, Bernhard J T. Directional modulation technique for phased arrays. IEEE Trans Antenn Propagat, 2009, 57: 2633–2640

    Google Scholar 

  8. Babakhani A, Rutledge D B, Hajimiri A. A near-field modulation technique using antenna reflector switching. In: Proceedings of 2008 IEEE International Solid-State Circuits Conference — Digest of Technical Papers, IEEE, 2008. 188–605

  9. Valliappan N, Lozano A, Heath R W. Antenna subset modulation for secure millimeter-wave wireless communication. IEEE Trans Commun, 2013, 61: 3231–3245

    Google Scholar 

  10. Hu J, Shu F, Li J. Robust synthesis method for secure directional modulation with imperfect direction angle. IEEE Commun Lett, 2016, 20: 1084–1087

    Google Scholar 

  11. Shu F, Wu X, Li J, et al. Robust synthesis scheme for secure multi-beam directional modulation in broadcasting systems. IEEE Access, 2016, 4: 6614–6623

    Google Scholar 

  12. Ding Y, Fusco V. Orthogonal vector approach for synthesis of multi-beam directional modulation transmitters. Antenn Wirel Propag Lett, 2015, 14: 1330–1333

    Google Scholar 

  13. Ding Y, Fusco V. A synthesis-free directional modulation transmitter using retrodirective array. IEEE J Sel Top Signal Process, 2017, 11: 428–441

    Google Scholar 

  14. Lu Z, Sun L, Zhang S, et al. Optimal power allocation for secure directional modulation networks with a full-duplex UAV user. Sci China Inf Sci, 2019, 62: 080304

    Google Scholar 

  15. Du C, Zhang Z, Wang X, et al. Optimal duplex mode selection for D2D-aided underlaying cellular networks. IEEE Trans Veh Technol, 2020, 69: 3119–3134

    Google Scholar 

  16. Luo S X, Zhang Z S, Wang S, et al. Network for hypersonic UCAV swarms. Sci China Inf Sci, 2020, 63: 140311

    Google Scholar 

  17. Rong B, Zhang Z, Zhao X, et al. Robust superimposed training designs for MIMO relaying systems under general power constraints. IEEE Access, 2019, 7: 80404–80420

    Google Scholar 

  18. Yan S, Yang N, Land I, et al. Three artificial-noise-aided secure transmission schemes in wiretap channels. IEEE Trans Veh Technol, 2018, 67: 3669–3673

    Google Scholar 

  19. Shu F, Xu L, Wang J, et al. Artificial-noise-aided secure multicast precoding for directional modulation systems. IEEE Trans Veh Technol, 2018, 67: 6658–6662

    Google Scholar 

  20. Goel S, Negi R. Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun, 2008, 7: 2180–2189

    Google Scholar 

  21. Nguyen N P, Ngo H Q, Duong T Q, et al. Secure massive MIMO with the artificial noise-aided downlink training. IEEE J Sel Areas Commun, 2018, 36: 802–816

    Google Scholar 

  22. Wang B, Mu P C, Yang P Z, et al. Two-step transmission with artificial noise for secure wireless SIMO communications. Sci China Inf Sci, 2015, 58: 042308

    Google Scholar 

  23. Li B, Fei Z S. Probabilistic-constrained robust secure transmission for energy harvesting over MISO channels. Sci China Inf Sci, 2018, 61: 022303

    Google Scholar 

  24. Wang W Q, So H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar. IEEE Trans Signal Process, 2014, 62: 2000–2011

    MathSciNet  MATH  Google Scholar 

  25. Wang W Q. Subarray-based frequency diverse array radar for target range-angle estimation. IEEE Trans Aerosp Electron Syst, 2014, 50: 3057–3067

    Google Scholar 

  26. Xu J, Liao G, Zhu S, et al. Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Trans Signal Process, 2015, 63: 3396–3410

    MathSciNet  MATH  Google Scholar 

  27. Sammartino P F, Baker C J, Griffiths H D. Frequency diverse MIMO techniques for radar. IEEE Trans Aerosp Electron Syst, 2013, 49: 201–222

    Google Scholar 

  28. Qin S, Zhang Y D, Amin M G, et al. Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization. IEEE J Sel Top Signal Process, 2017, 11: 321–335

    Google Scholar 

  29. Khan W, Qureshi I M, Basit A, et al. Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset. Antenn Wirel Propag Lett, 2016, 15: 885–888

    Google Scholar 

  30. Liao Y, Wang W-Q, Shao H. Symmetrical logarithmic frequency diverse array for target imaging. In: Proceedings of 2018 IEEE Radar Conference (RadarConf18), 2018. 39–42

  31. Basit A, Qureshi I M, Khan W, et al. Cognitive frequency diverse array radar with symmetric non-uniform frequency offset. Sci China Inf Sci, 2016, 59: 102314

    Google Scholar 

  32. Khan W, Qureshi I M. Frequency diverse array radar with time-dependent frequency offset. Antenn Wirel Propag Lett, 2014, 13: 758–761

    Google Scholar 

  33. Khan W, Qureshi I M, Saeed S. Frequency diverse array radar with logarithmically increasing frequency offset. Antenn Wirel Propag Lett, 2015, 14: 499–502

    Google Scholar 

  34. Ma Y, Wei P, Zhang H. General focusing beamformer for FDA: mathematical model and resolution analysis. IEEE Trans Antenn Propagat, 2019, 67: 3089–3100

    Google Scholar 

  35. Wang W Q. DM using FDA antenna for secure transmission. IET Microwaves Antenn Propagat, 2017, 11: 336–345

    Google Scholar 

  36. Hu J, Yan S, Shu F, et al. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays. IEEE Access, 2017, 5: 1658–1667

    Google Scholar 

  37. Wei X, Xiao Y, Xiao Y, et al. Spatial and directional modulation with random frequency diverse array. In: Proceedings of 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018. 976–979

  38. Cheng Q, Zhu J, Xie T, et al. Time-invariant angle-range dependent directional modulation based on time-modulated frequency diverse arrays. IEEE Access, 2017, 5: 26279–26290

    Google Scholar 

  39. Ji S, Wang W Q, Chen H, et al. On physical-layer security of FDA communications over Rayleigh fading channels. IEEE Trans Cogn Commun Netw, 2019, 5: 476–490

    Google Scholar 

  40. Qiu B, Tao M, Wang L, et al. Multi-beam directional modulation synthesis scheme based on frequency diverse array. IEEE Trans Inform Forensic Secur, 2019, 14: 2593–2606

    Google Scholar 

  41. Wang W Q. Retrodirective frequency diverse array focusing for wireless information and power transfer. IEEE J Sel Areas Commun, 2019, 37: 61–73

    Google Scholar 

  42. Llombart N, Cooper K B, Dengler R J, et al. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager. IEEE Trans Antenn Propagat, 2010, 58: 1834–1841

    Google Scholar 

  43. Zhang B, Liu W. Positional modulation design based on multiple phased antenna arrays. IEEE Access, 2019, 7: 33898–33905

    Google Scholar 

  44. Lin J, Li Q, Yang J, et al. Physical-layer security for proximal legitimate user and eavesdropper: a frequency diverse array beamforming approach. IEEE Trans Inform Forensic Secur, 2018, 13: 671–684

    Google Scholar 

  45. Chen K, Yang S, Chen Y, et al. Accurate models of time-invariant beampatterns for frequency diverse arrays. IEEE Trans Antenn Propagat, 2019, 67: 3022–3029

    Google Scholar 

  46. Xu Y, Shi X, Li W, et al. Low-sidelobe range-angle beamforming with FDA using multiple parameter optimization. IEEE Trans Aerosp Electron Syst, 2019, 55: 2214–2225

    Google Scholar 

  47. Xing C, Ma S, Zhou Y. Matrix-monotonic optimization for MIMO systems. IEEE Trans Signal Process, 2015, 63: 334–348

    MathSciNet  MATH  Google Scholar 

  48. Xing C, Zhao X, Xu W, et al. A framework on hybrid MIMO transceiver design based on matrix-monotonic optimization. IEEE Trans Signal Process, 2019, 67: 3531–3546

    MathSciNet  MATH  Google Scholar 

  49. Gong S, Xing C, Chen S, et al. Secure communications for dual-polarized MIMO systems. IEEE Trans Signal Process, 2017, 65: 4177–4192

    MathSciNet  MATH  Google Scholar 

  50. Gong S, Xing C, Chen S, et al. Polarization sensitive array based physical-layer security. IEEE Trans Veh Technol, 2018, 67: 3964–3981

    Google Scholar 

  51. Gong S, Xing C, Ma S, et al. Secure wideband beamforming design for two-way MIMO relaying systems. IEEE Trans Veh Technol, 2019, 68: 3472–3486

    Google Scholar 

  52. Cui S Q, An J P, Zhang F, et al. Burst frame synchronization in low SNR. In: Proceedings of 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), 2013. 1284–1287

  53. Xu H Z, Wei W J, Zhang B, et al. Joint frequency-phase estimation for pilot-limited communication systems: a novel method based on length-variable auto-correlation operator. Sci China Inf Sci, 2019, 62: 169303

    Google Scholar 

  54. Liu Y, Ruan H, Wang L, et al. The random frequency diverse array: a new antenna structure for uncoupled direction-range indication in active sensing. IEEE J Sel Top Signal Process, 2017, 11: 295–308

    Google Scholar 

  55. Nusenu S Y, Wang W, Ji S. Secure directional modulation using frequency diverse array antenna. In: Proceedings of 2017 IEEE Radar Conference (RadarConf), 2017. 0378–0382

  56. Re P D H, Podilchak S K, Constantinides C, et al. An active retrodirective antenna element for circularly polarized wireless power transmission. In: Proceedings of 2016 IEEE Wireless Power Transfer Conference (WPTC), 2016. 1–4

  57. Pon C. Retrodirective array using the heterodyne technique. IEEE Trans Antennas Propagat, 1964, 12: 176–180

    Google Scholar 

  58. Yao A, Wu W, Fang D. Frequency diverse phase-conjugating retrodirective array with simultaneous range-focusing capability for multi-targets. In: Proceedings of 2015 Asia-Pacific Microwave Conference (APMC), 2015. 1–3

  59. Nusenu S Y, Huaizong S. Green secure communication range-angle focusing quadrature spatial modulation using frequency modulated diverse retrodirective array for mmWave wireless communications. IEEE Trans Veh Technol, 2019, 68: 6867–6877

    Google Scholar 

  60. Xu Y, Li W, Qin W. The test and evaluation of GPS on-board clock. In: Proceedings of 2013 Joint European Frequency and Time Forum and International Frequency Control Symposium (EFTF/IFC), 2013. 295–298

  61. Goldsmith A. Wireless Communications. Cambridge: Cambridge University Press, 2005

    Google Scholar 

  62. DiDomenico L D, Rebeiz G M. Digital communications using self-phased arrays. IEEE Trans Microwave Theor Techn, 2001, 49: 677–684

    Google Scholar 

  63. Yu J, Cali J, Zhao F, et al. A direct digital synthesis based chirp radar transmitter in 0.13 µm SiGe technology. In: Proceedings of 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2013. 41–44

  64. Kay S M. Fundamentals of Statistical Signal Processing. Upper Saddle River: Prentice Hall PTR, 1993

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61620106001, U1836201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, S., An, J. & Wang, S. Synthesis-free directional modulation for retrodirective frequency diverse array. Sci. China Inf. Sci. 63, 202304 (2020). https://doi.org/10.1007/s11432-020-2853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2853-9

Keywords

Navigation