Skip to main content
Log in

Automatic mode-locking fiber lasers: progress and perspectives

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Polarization control in nonlinear polarization rotation based mode-locked fiber lasers is a long-term challenge. Suffering from the polarization drifts induced by environmental disturbances, nonlinear polarization rotation based mode-locked fiber lasers is difficult in continuously operating under the desired pulsation regime thereby substantially hindering their utilizations. The appearance of automatic mode-locking techniques brings the light in addressing this challenge. Combining with various algorithms and electrical polarization control, automatic mode-locking techniques resolve the dilemma of nonlinear polarization rotation based mode-locked fiber lasers. We review the research progress of automatic mode-locking techniques in detail. Furthermore, we comment on the perspectives and potential applications of automatic mode-locking techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Udem T, Holzwarth R, Hansch T W. Optical frequency metrology. Nature, 2002, 416: 233–237

    Article  Google Scholar 

  2. Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288: 635–639

    Article  Google Scholar 

  3. Reichert J, Holzwarth R, Udem T, et al. Measuring the frequency of light with mode-locked lasers. Opt Commun, 1999, 172: 59–68

    Article  Google Scholar 

  4. Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys Rev Lett, 2000, 84: 5102–5105

    Article  Google Scholar 

  5. Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature, 2014, 506: 71–75

    Article  Google Scholar 

  6. Nemitz N, Ohkubo T, Takamoto M, et al. Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time. Nat Photon, 2016, 10: 258–261

    Article  Google Scholar 

  7. Khilo A, Spector S J, Grein M E, et al. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt Express, 2012, 20: 4454–4469

    Article  Google Scholar 

  8. Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system. Nature, 2014, 507: 341–345

    Article  Google Scholar 

  9. Lee J, Kim Y J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses. Nat Photon, 2010, 4: 716–720

    Article  Google Scholar 

  10. Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range. Nat Photon, 2009, 3: 351–356

    Article  Google Scholar 

  11. Li C H, Benedick A J, Fendel P, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cms−1. Nature, 2008, 452: 610–612

    Article  Google Scholar 

  12. Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations. Science, 2008, 321: 1335–1337

    Article  Google Scholar 

  13. Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv Opt Photon, 2016, 8: 465

    Article  Google Scholar 

  14. Kuizenga D, Siegman A. FM and AM mode locking of the homogeneous laser-part I: theory. IEEE J Quantum Electron, 1970, 6: 694–708

    Article  Google Scholar 

  15. Haus H A. Mode-locking of lasers. IEEE J Sel Top Quantum Electron, 2000, 6: 1173–1185

    Article  Google Scholar 

  16. Zhang X, Hu H, Li W, et al. High-repetition-rate ultrashort pulsed fiber ring laser using hybrid mode locking. Appl Opt, 2016, 55: 7885–7891

    Article  Google Scholar 

  17. Fu W, Wright L G, Sidorenko P, et al. Several new directions for ultrafast fiber lasers. Opt Express, 2018, 26: 9432–9463

    Article  Google Scholar 

  18. Meng Y, Salhi M, Niang A, et al. Mode-locked Er:Yb-doped double-clad fiber laser with 75-nm tuning range. Opt Lett, 2015, 40: 1153–1156

    Article  Google Scholar 

  19. Kang M S, Joly N Y, Russell P S J. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances. Opt Lett, 2013, 38: 561–563

    Article  Google Scholar 

  20. Amrani F, Haboucha A, Salhi M, et al. Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic. Opt Lett, 2009, 34: 2120–2122

    Article  Google Scholar 

  21. Wang S, Wang Y, Feng G, et al. Harmonically mode-locked Yb: CALGO laser pumped by a single-mode 12 W laser diode. Opt Express, 2018, 26: 1521–1529

    Article  Google Scholar 

  22. Zhang Z, Mou C, Yan Z, et al. Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating. Opt Express, 2015, 23: 1353–1360

    Article  Google Scholar 

  23. Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt Express, 2015, 23: 12823–12833

    Article  Google Scholar 

  24. Kong L C, Xie G Q, Yuan P, et al. Passive Q-switching and Q-switched mode-locking operations of 2 m Tm: CLNGG laser with MoS 2 saturable absorber mirror. Photon Res, 2015, 3: 47–50

    Article  Google Scholar 

  25. DeMaria A J, Stetser D A, Heynau H. Self mode-locking of lasers with saturable absorbers. Appl Phys Lett, 1966, 8: 174–176

    Article  Google Scholar 

  26. Dudley J M, Genty G, Mussot A, et al. Rogue waves and analogies in optics and oceanography. Nat Rev Phys, 2019, 1: 675–689

    Article  Google Scholar 

  27. Namiki S, Ippen E P, Haus H A, et al. Energy rate equations for mode-locked lasers. J Opt Soc Am B, 1997, 14: 2099–2111

    Article  Google Scholar 

  28. Bale B G, Kieu K, Kutz J N, et al. Transition dynamics for multi-pulsing in mode-locked lasers. Opt Express, 2009, 17: 23137–23146

    Article  Google Scholar 

  29. Li F, Wai P K A, Kutz J N. Geometrical description of the onset of multi-pulsing in mode-locked laser cavities. J Opt Soc Am B, 2010, 27: 2068–2077

    Article  Google Scholar 

  30. Sun S Q, Lin Z X, Li W, et al. Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser. Opt Express, 2018, 26: 20888–20901

    Article  Google Scholar 

  31. Imai M, Terasawa Y, Ohtsuka Y. Polarization fluctuation characteristics of a highly birefringent fiber system under forced vibration. J Lightw Technol, 1988, 6: 720–727

    Article  Google Scholar 

  32. Namihira Y, Wakabayashi H. Real-time measurements of polarization fluctuations in an optical fiber submarine cable in a deep-sea trial using electrooptic LiNbO3 device. J Lightw Technol, 1989, 7: 1201–1206

    Article  Google Scholar 

  33. Karlsson O, Brentel J, Andrekson P A. Long-term measurement of PMD and polarization drift in installed fibers. J Lightw Technol, 2000, 18: 941–951

    Article  Google Scholar 

  34. Waddy D S, Lu P, Chen L, et al. Fast state of polarization changes in aerial fiber under different climatic conditions. IEEE Photon Technol Lett, 2001, 13: 1035–1037

    Article  Google Scholar 

  35. Wuttke J, Krummrich P M, Rosch J. Polarization oscillations in aerial fiber caused by wind and power-line current. IEEE Photon Technol Lett, 2003, 15: 882–884

    Article  Google Scholar 

  36. Willner A E, Nezam S M R M, Yan L, et al. Monitoring and control of polarization-related impairments in optical fiber systems. J Lightw Technol, 2004, 22: 106–125

    Article  Google Scholar 

  37. Waddy D S, Chen L, Bao X. Polarization effects in aerial fibers. Opt Fiber Technol, 2005, 11: 1–19

    Article  Google Scholar 

  38. Woodward S L, Nelson L E, Schneider C R, et al. Long-term observation of PMD and SOP on installed fiber routes. IEEE Photon Technol Lett, 2013, 26: 213–216

    Article  Google Scholar 

  39. Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking. J Opt Soc Am B, 1999, 16: 46–56

    Article  Google Scholar 

  40. Wang Y, Lin N, Gao W. Strain compensated robust semiconductor saturable absorber mirror for fiber lasers. Chin Opt Lett, 2019, 17: 071404

    Article  Google Scholar 

  41. Krausz F, Brabec T, Spielmann C. Self-starting passive mode locking. Opt Lett, 1991, 16: 235–237

    Article  Google Scholar 

  42. Tamura K, Haus H A, Ippen E P. Self-starting additive pulse mode-locked erbium fibre ring laser. Electron Lett, 1992, 28: 2226–2228

    Article  Google Scholar 

  43. Matsas V J, Newson T P, Zervas M N. Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching. Opt Commun, 1992, 92: 61–66

    Article  Google Scholar 

  44. Nielsen C K, Ortaç B, Schreiber T, et al. Self-starting self-similar all-polarization maintaining Yb-doped fiber laser. Opt Express, 2005, 13: 9346–9351

    Article  Google Scholar 

  45. Fermann M E, Andrejco M J, Stock Y, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber. Opt Lett, 1993, 18: 894–896

    Article  Google Scholar 

  46. Sobon G, Sotor J, Abramski K M. All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber. Laser Phys Lett, 2012, 9: 581–586

    Article  Google Scholar 

  47. Szczepanek J, Kardaś T M, Radzewicz C, et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers. Opt Lett, 2017, 42: 575–578

    Article  Google Scholar 

  48. Turchinovich D, Liu X, Lægsgaard J. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber. Opt Express, 2008, 16: 14004–14014

    Article  Google Scholar 

  49. Liu X, Lægsgaard J, Turchinovich D. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers. Opt Express, 2010, 18: 15475–15483

    Article  Google Scholar 

  50. Liu X, Lægsgaard J, Turchinovich D. Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber. Opt Lett, 2010, 35: 913–915

    Article  Google Scholar 

  51. Hellwig T, Walbaum T, Groß P, et al. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation. Appl Phys B, 2010, 101: 565–570

    Article  Google Scholar 

  52. Shen X, Li W, Yan M, et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers. Opt Lett, 2012, 37: 3426–3428

    Article  Google Scholar 

  53. Radnatarov D, Khripunov S, Kobtsev S, et al. Automatic electronic-controlled mode locking self-start in fiber lasers with non-linear polarization evolution. Opt Express, 2013, 21: 20626–20631

    Article  Google Scholar 

  54. Li S, Xu J, Chen G, et al. An automatic mode-locked system for passively mode-locked fiber laser. In: Proceedings of International Conference on Optical Instruments and Technology (OIT), Beijing, 2013. 9043

  55. Olivier M, Gagnon M D, Piché M. Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state. Opt Express, 2015, 23: 6738–6746

    Article  Google Scholar 

  56. Shen X, Hao Q, Zeng H. Self-tuning mode-locked fiber lasers based on prior collection of polarization settings. IEEE Photon Technol Lett, 2017, 29: 1719–1722

    Article  Google Scholar 

  57. Pu G, Yi L, Zhang L, et al. Programmable and fast-switchable passively harmonic mode-locking fiber laser. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), San Diego, 2018. W2A.9

  58. Wu H H, Huang P H, Teng Y H, et al. Automatic generation of noise-like or mode-locked pulses in an Ytterbium-doped fiber laser by using two-photon-induced current for feedback. IEEE Photon J, 2018, 10: 1–8

    Article  Google Scholar 

  59. Fu X, Kutz J N. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm. Opt Express, 2013, 21: 6526–6537

    Article  Google Scholar 

  60. Andral U, Fodil R S, Amrani F, et al. Fiber laser mode locked through an evolutionary algorithm. Optica, 2015, 2: 275–278

    Article  Google Scholar 

  61. Andral U, Buguet J, Fodil R S, et al. Toward an autosetting mode-locked fiber laser cavity. J Opt Soc Am B, 2016, 33: 825–833

    Article  Google Scholar 

  62. Woodward R I, Kelleher E J R. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm. Sci Rep, 2016, 6: 37616

    Article  Google Scholar 

  63. Woodward R I, Kelleher E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Opt Lett, 2017, 42: 2952–2955

    Article  Google Scholar 

  64. Winters D G, Kirchner M S, Backus S J, et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser. Opt Express, 2017, 25: 33216–33225

    Article  Google Scholar 

  65. Ryser M, Bacher C, Latt C, et al. Self-optimizing additive pulse mode-locked fiber laser: wavelength tuning and selective operation in continuous-wave or mode-locked regime. Fiber Lasers XV: Technol Syst, 2018, 10512: 1

    Google Scholar 

  66. Pu G, Yi L, Zhang L, et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 2019, 6: 362–369

    Article  Google Scholar 

  67. Pu G, Yi L, Zhang L, et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser. IEEE Photon Technol Lett, 2019, 32: 7–10

    Article  Google Scholar 

  68. Brunton S L, Fu X, Kutz J N. Extremum-seeking control of a mode-locked laser. IEEE J Quantum Electron, 2013, 49: 852–861

    Article  Google Scholar 

  69. Fu X, Brunton S L, Kutz J N. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt Express, 2014, 22: 8585–8597

    Article  Google Scholar 

  70. Brunton S L, Fu X, Kutz J N. Self-tuning fiber lasers. IEEE J Sel Top Quantum Electron, 2014, 20: 464–471

    Article  Google Scholar 

  71. Kutz J N, Brunton S L. Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics. Nanophotonics, 2015, 4: 459–471

    Article  Google Scholar 

  72. Baumeister T, Brunton S L, Kutz J N. Deep learning and model predictive control for self-tuning mode-locked lasers. J Opt Soc Am B, 2018, 35: 617–626

    Article  Google Scholar 

  73. Shen X, He B, Zhao J, et al. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity. Appl Phys Lett, 2015, 106: 031117

    Article  Google Scholar 

  74. Horowitz M, Barad Y, Silberberg Y. Noiselike pulses witha broadband spectrum generated from an erbium-dopedfiber laser. Opt Lett, 1997, 22: 799–801

    Article  Google Scholar 

  75. Zhao L M, Tang D Y, Wu J, et al. Noise-like pulse in a gain-guided soliton fiber laser. Opt Express, 2007, 15: 2145–2150

    Article  Google Scholar 

  76. An Y, Shen D, Zhao W, et al. Characteristics of pulse evolution in mode-locked thulium-doped fiber laser. Opt Commun, 2012, 285: 1949–1953

    Article  Google Scholar 

  77. Holland J H. Genetic algorithms. Scient Am, 1992, 267: 66–73

    Article  Google Scholar 

  78. Özgören K, Ilday F Ö. All-fiber all-normal dispersion laser with a fiber-based Lyot filter. Opt Lett, 2010, 35: 1296–1298

    Article  Google Scholar 

  79. Fedotov Y S, Kobtsev S M, Arif R N, et al. Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter. Opt Express, 2012, 20: 17797–17805

    Article  Google Scholar 

  80. Zhang Z X, Xu Z W, Zhang L. Tunable and switchable dual-wavelength dissipative soliton generation in an allnormal-dispersion Yb-doped fiber laser with birefringence fiber filter. Opt Express, 2012, 20: 26736–26742

    Article  Google Scholar 

  81. Devore J L. Probability and Statistics for Engineering and the Sciences. Singapore: Cengage Learning, 2011

    Google Scholar 

  82. You X H, Zhang C, Tan X S, et al. AI for 5G: research directions and paradigms. Sci China Inf Sci, 2019, 62: 021301

    Article  Google Scholar 

  83. Chen S T, Jian Z Q, Huang Y H, et al. Autonomous driving: cognitive construction and situation understanding. Sci China Inf Sci, 2019, 62: 081101

    Article  Google Scholar 

  84. Habimana O, Li Y H, Li R X, et al. Sentiment analysis using deep learning approaches: an overview. Sci China Inf Sci, 2020, 63: 111102

    Article  Google Scholar 

  85. Duda R, Hart P, Storck D. Pattern Classification. New York: Wiley, 2001

    Google Scholar 

  86. Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2006

    MATH  Google Scholar 

  87. Murphy K. Machine Learning: A Probabilistic Perspective. Cambridge: MIT Press, 2012

    MATH  Google Scholar 

  88. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press, 2016

    MATH  Google Scholar 

  89. García C E, Prett D M, Morari M. Model predictive control: theory and practice-a survey. Automatica, 1989, 25: 335–348

    Article  MATH  Google Scholar 

  90. Bhushan A S, Coppinger F, Jalali B. Time-stretched analogue-to-digital conversion. Electron Lett, 1998, 34: 839–841

    Article  Google Scholar 

  91. Mahjoubfar A, Churkin D V, Barland S, et al. Time stretch and its applications. Nat Photon, 2017, 11: 341–351

    Article  Google Scholar 

  92. Pu G, Yi L, Zhang L, et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light Sci Appl, 2020, 9: 13

    Article  Google Scholar 

  93. Stratmann M, Pagel T, Mitschke F. Experimental observation of temporal soliton molecules. Phys Rev Lett, 2005, 95: 143902

    Article  Google Scholar 

  94. Li L, Huang H, Su L, et al. Various soliton molecules in fiber systems. Appl Opt, 2019, 58: 2745–2753

    Article  Google Scholar 

  95. Briles T C, Yost D C, Cingöz A, et al. Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth. Opt Express, 2010, 18: 9739–9746

    Article  Google Scholar 

  96. Hudson D D, Holman K W, Jones R J, et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. Opt Lett, 2005, 30: 2948–2950

    Article  Google Scholar 

  97. Lapre C, Billet C, Meng F, et al. Real-time characterization of spectral instabilities in a mode-locked fibre laser exhibiting soliton-similariton dynamics. Sci Rep, 2019, 9: 1–12

    Article  Google Scholar 

  98. Herink G, Kurtz F, Jalali B, et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 2017, 356: 50–54

    Article  Google Scholar 

  99. Liu X, Yao X, Cui Y. Real-time observation of the buildup of soliton molecules. Phys Rev Lett, 2018, 121: 023905

    Article  Google Scholar 

  100. Pu G, Yi L, Zhang L, et al. Real-time observation of the regime transition dynamics of mode-locked fiber lasers. IEEE Photon Technol Lett, 2019, 31: 1545–1548

    Article  Google Scholar 

  101. Runge A F J, Broderick N G R, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica, 2015, 2: 36–39

    Article  Google Scholar 

  102. Herink G, Jalali B, Ropers C, et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat Photon, 2016, 10: 321–326

    Article  Google Scholar 

  103. Ryczkowski P, Närhi M, Billet C, et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat Photon, 2018, 12: 221–227

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61575122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilin Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, G., Zhang, L., Hu, W. et al. Automatic mode-locking fiber lasers: progress and perspectives. Sci. China Inf. Sci. 63, 160404 (2020). https://doi.org/10.1007/s11432-020-2883-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2883-0

Keywords

Navigation