Skip to main content
Log in

A new optimization algorithm applied in electromagnetics — Maxwell’s equations derived optimization (MEDO)

  • Research Paper
  • From CAS & CAE Members
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, a novel global optimization algorithm, named as Maxwell’s equations derived optimization (MEDO), is proposed. Using the Maxwell’s equations to analyse the behaviors of the time-varying current, the Ampere force is obtained from Fleming’s left hand rule. MEDO introduces an ‘Ampere force’ term, which is derived from Maxwell’s equations and is rigorous in physics, to drive the variables to the global optimal solution in the search space. In addition, introducing ‘gravity’ to MEDO can increase the stability of the optimizations. 11 classical benchmarks are tested, and results show that MEDO can always converge to numerical optimal solutions. To evaluate the proposed MEDO in solving the electromagnetic problems, four practical engineering applications are considered including the linear antenna array synthesis, frequency selected surface optimization, numerical dispersion reduction for finite-difference method, and parameters extraction of typical waveform. These examples are significant in electromagnetics, but tough to be solved because of their high dimensionality and strong nonlinearity. Numerical results show that MEDO can outperform several classic optimization methods, like wind driven optimization (WDO) and particle swarm optimization (PSO). Therefore, the electromagnetics-inspired MEDO is robust and of great potential in solving the electromagnetic optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi P. Gradient descent learning algorithm overview: a general dynamical systems perspective. IEEE Trans Neural Netw, 1995, 6: 182–195

    Article  Google Scholar 

  2. Mahony R E, Williamson R C. Prior knowledge and preferential structures in gradient descent learning algorithms. J Machine Learn Res, 2001, 1: 311–355

    MathSciNet  MATH  Google Scholar 

  3. Wu Y M, Jiang L J, Sha W E I, et al. The numerical steepest descent path method for calculating physical optics integrals on smooth conducting quadratic surfaces. IEEE Trans Antenn Propagat, 2013, 61: 4183–4193

    Article  MathSciNet  Google Scholar 

  4. Xu H J, Huang C Q, Pan P, et al. Image retrieval based on multi-concept detector and semantic correlation. Sci China Inf Sci, 2015, 58: 122104

    Google Scholar 

  5. Großhans M, Scheffer T. Solving prediction games with parallel batch gradient descent. In: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2015. 152–167

  6. Fan Q, Wu W, Zurada J M. Convergence of batch gradient learning with smoothing regularization and adaptive momentum for neural networks. SpringerPlus, 2016, 5: 295

    Article  Google Scholar 

  7. Si Z, Wen S, Dong B. NOMA codebook optimization by batch gradient descent. IEEE Access, 2019, 7: 117274

    Article  Google Scholar 

  8. Bonnabel S. Stochastic gradient descent on riemannian manifolds. IEEE Trans Automat Contr, 2013, 58: 2217–2229

    Article  MathSciNet  Google Scholar 

  9. Mercier Q, Poirion F, Désidéri J A. A stochastic multiple gradient descent algorithm. Eur J Oper Res, 2018, 271: 808–817

    Article  MathSciNet  Google Scholar 

  10. Liu Y, Huangfu W, Zhang H, et al. An efficient stochastic gradient descent algorithm to maximize the coverage of cellular networks. IEEE Trans Wirel Commun, 2019, 18: 3424–3436

    Article  Google Scholar 

  11. Tao H, Wu B, Lin X. Budgeted mini-batch parallel gradient descent for support vector machines on spark. In: Proceedings of 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2014. 945–950

  12. Ghadimi S, Lan G, Zhang H. Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Math Program, 2016, 155: 267–305

    Article  MathSciNet  Google Scholar 

  13. Khirirat S, Feyzmahdavian H R, Johansson M. Mini-batch gradient descent: faster convergence under data sparsity. In: Proceedings of 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017. 2880–2887

  14. Eberhart R, Kennedy J. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, 1995. 1942–1948

  15. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, 1995. 39–43

  16. De Jong K. Adaptive system design: a genetic approach. IEEE Trans Syst Man Cybern, 1980, 10: 566–574

    Article  MathSciNet  Google Scholar 

  17. Wang Y K, Chen X B. Hybrid quantum particle swarm optimization algorithm and its application. Sci China Inf Sci, 2020, 63: 159201

    Article  MathSciNet  Google Scholar 

  18. Sun Z X, Song J J, An Y R. Optimization of the head shape of the CRH3 high speed train. Sci China Technol Sci, 2010, 53: 3356–3364

    Article  Google Scholar 

  19. Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optimiz, 1997, 11: 341–359

    Article  MathSciNet  Google Scholar 

  20. Cui C Y, Jiao Y C, Zhang L, et al. Synthesis of subarrayed monopluse arrays with contiguous elements using a DE algorithm. IEEE Trans Antenn Propagat, 2017, 65: 4340–4345

    Article  Google Scholar 

  21. Xiang S, Xing L N, Wang L, et al. Comprehensive learning pigeon-inspired optimization with tabu list. Sci China Inf Sci, 2019, 62: 070208

    Article  MathSciNet  Google Scholar 

  22. Cui Z H, Zhang J J, Wang Y C, et al. A pigeon-inspired optimization algorithm for many-objective optimization problems. Sci China Inf Sci, 2019, 62: 070212

    Article  Google Scholar 

  23. Zhou Y, He F Z, Qiu Y M. Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Sci China Inf Sci, 2017, 60: 068102

    Article  Google Scholar 

  24. Liu H X, Liu F, Zhang X J, et al. Aircraft conflict resolution method based on hybrid ant colony optimization and artificial potential field. Sci China Inf Sci, 2018, 61: 129103

    Article  Google Scholar 

  25. Bayraktar Z, Komurcu M, Bossard J A, et al. The wind driven optimization technique and its application in electromagnetics. IEEE Trans Antenn Propagat, 2013, 61: 2745–2757

    Article  MathSciNet  Google Scholar 

  26. Bayraktar Z, Komurcu M. Adaptive wind driven optimization. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), 2016. 124–127

  27. Chen G, Yang S, Ren Q, et al. Numerical dispersion reduction approach for finite-difference methods. Electron Lett, 2019, 55: 591–593

    Article  Google Scholar 

  28. Su D L, Xu H, Zhou Z, et al. An improved method of trapezoidal waves time-domain parameters extraction from EMI spectrum. In: Proceedings of 2019 International Applied Computational Electromagnetics Society Symposium (ACES), 2019. 1–2

  29. Paul C R. Inductance: Loop and Partial. Hoboken: John Wiley & Sons, 2011

    Google Scholar 

  30. Maxwell J C. A Dynamical Theory of the Electromagnetic Field. London: Royal Society, 1856

    Google Scholar 

  31. Bevelacqua P J, Balanis C A. Minimum sidelobe levels for linear arrays. IEEE Trans Antenn Propagat, 2007, 55: 3442–3449

    Article  Google Scholar 

  32. Yang S H, Kiang J F. Adjustment of beamwidth and side-lobe level of large phased-arrays using particle swarm optimization technique. IEEE Trans Antenn Propagat, 2014, 62: 138–144

    Article  Google Scholar 

  33. Safaai-Jazi A, Stutzman W L. A new low-sidelobe pattern synthesis technique for equally spaced linear arrays. IEEE Trans Antenn Propagat, 2016, 64: 1317–1324

    Article  MathSciNet  Google Scholar 

  34. Rahman S U, Cao Q, Ahmed M M, et al. Analysis of linear antenna array for minimum side lobe level, half power beamwidth, and nulls control using PSO. J Microw Optoelectron Electromagn Appl, 2017, 16: 577–591

    Article  Google Scholar 

  35. Darvish A, Ebrahimzadeh A. Improved fruit-fly optimization algorithm and its applications in antenna arrays synthesis. IEEE Trans Antenn Propagat, 2018, 66: 1756–1766

    Article  Google Scholar 

  36. Goswami B, Mandal D. Nulls and side lobe levels control in a time modulated linear antenna array by optimizing excitations and element locations using RGA. J Microw Optoelectron Electromagn Appl, 2013, 12: 238–255

    Article  Google Scholar 

  37. Keizer W P M N. Element failure correction for a large monopulse phased array antenna with active amplitude weighting. IEEE Trans Antenn Propagat, 2007, 55: 2211–2218

    Article  Google Scholar 

  38. Grewal N S, Rattan M, Patterh M S. A linear antenna array failure correction using firefly algorithm. Progress Electromagn Res M, 2012, 27: 241–254

    Article  Google Scholar 

  39. Muralidharan R, Vallavaraj A, Mahanti G K, et al. QPSO for failure correction of linear array of mutually coupled parallel dipole antennas with desired side lobe level and return loss. J King Saud Univ-Eng Sci, 2017, 29: 112–117

    Google Scholar 

  40. Munk B A. Frequency Selective Surfaces: Theory and Design. Hoboken: John Wiley & Sons, 2005

    Google Scholar 

  41. Kiani G I, Olsson L G, Karlsson A, et al. Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings. IEEE Trans Antenn Propagat, 2011, 59: 520–525

    Article  Google Scholar 

  42. Lins H W C, Barreto E L F, d’Assunção A G. Enhanced wideband performance of coupled frequency selective surfaces using metaheuristics. Microw Opt Technol Lett, 2013, 55: 711–715

    Article  Google Scholar 

  43. Yee K. Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antenn Propagat, 1966, 14: 302–307

    Article  Google Scholar 

  44. Tam C K W, Webb J C. Dispersion-relation-preserving finite difference schemes for computational acoustics. J Comput Phys, 1993, 107: 262–281

    Article  MathSciNet  Google Scholar 

  45. Fornberg B. Classroom note: calculation of weights in finite difference formulas. SIAM Rev, 1998, 40: 685–691

    Article  MathSciNet  Google Scholar 

  46. Du Q, Li B, Hou B. Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggeredgrid finite difference scheme. Appl Geophys, 2009, 6: 42–49

    Article  Google Scholar 

  47. Su D L, Xie S, Chen A, et al. Basic emission waveform theory: a novel interpretation and source identification method for electromagnetic emission of complex systems. IEEE Trans Electromagn Compat, 2018, 60: 1330–1339

    Article  Google Scholar 

  48. Shang X, Su D L. Use modified lomb-scargle method to analyze electromagnetic emission spectrum. In: Proceedings of 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 2015. 415–420

Download references

Acknowledgements

This work was supported by National Military Key Pre-research Project of the 13th Five-Year Plan (Grant No. 41409010101), National Natural Science Foundation of China (Grant Nos. 61427803, 61771032), and Civil Aircraft Projects of China (Grant No. MJ-2017-F-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, D., Li, L., Yang, S. et al. A new optimization algorithm applied in electromagnetics — Maxwell’s equations derived optimization (MEDO). Sci. China Inf. Sci. 63, 200301 (2020). https://doi.org/10.1007/s11432-020-2927-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2927-2

Keywords

Navigation