Skip to main content
Log in

Quantum network based on non-classical light

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Quantum network enables quantum communication among quantum nodes and provides advantages that are unavailable in any classical network. Based on rapidly developing science and technology in quantum communication, the studies on quantum network have also made important progresses recent years. In this study, we briefly review the experimental progresses in building quantum network based on optical field and discuss the challenges toward a quantum Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cirac J I, Ekert A K, Huelga S F, et al. Distributed quantum computation over noisy channels. Phys Rev A, 1999, 59: 4249–4254

    Article  MathSciNet  Google Scholar 

  2. Lim Y L, Beige A, Kwek L C. Repeat-until-success linear optics distributed quantum computing. Phys Rev Lett, 2005, 95: 030505

    Article  Google Scholar 

  3. Jiang L, Taylor J M, Sørensen A S, et al. Distributed quantum computation based on small quantum registers. Phys Rev A, 2007, 76: 062323

    Article  Google Scholar 

  4. Sheng Y B, Zhou L. Distributed secure quantum machine learning. Sci Bull, 2017, 62: 1025–1029

    Article  Google Scholar 

  5. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  MATH  Google Scholar 

  6. Diamanti E, Lo H K, Qi B, et al. Practical challenges in quantum key distribution. npj Quantum Inf, 2016, 2: 16025

    Article  Google Scholar 

  7. Huang A, Barz S, Andersson E, et al. Implementation vulnerabilities in general quantum cryptography. New J Phys, 2018, 20: 103016

    Article  Google Scholar 

  8. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  Google Scholar 

  9. Hu J Y, Yu B, Jing M Y, et al. Experimental quantum secure direct communication with single photons. Light Sci Appl, 2016, 5: e16144

    Article  Google Scholar 

  10. Zhang W, Ding D S, Sheng Y B, et al. Quantum secure direct communication with quantum memory. Phys Rev Lett, 2017, 118: 220501

    Article  Google Scholar 

  11. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  MATH  Google Scholar 

  12. Yin J, Ren J G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488: 185–188

    Article  Google Scholar 

  13. Ma X S, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489: 269–273

    Article  Google Scholar 

  14. Takesue H, Dyer S D, Stevens M J, et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica, 2015, 2: 832–835

    Article  Google Scholar 

  15. Kimble H J. The quantum Internet. Nature, 2008, 453: 1023–1030

    Article  Google Scholar 

  16. Pirandola S, Braunstein S L. Physics: unite to build a quantum Internet. Nature, 2016, 532: 169–171

    Article  Google Scholar 

  17. Wehner S, Elkouss D, Hanson R. Quantum Internet: a vision for the road ahead. Science, 2018, 362: 303

    Article  MathSciNet  MATH  Google Scholar 

  18. Townsend P D. Quantum cryptography on multiuser optical fibre networks. Nature, 1997, 385: 47–49

    Article  Google Scholar 

  19. Elliott C. The DARPA quantum network. In: Quantum Communications and Cryptography. Boca Raton: CRC Press, 2006

    Google Scholar 

  20. Poppe A, Peev M, Maurhart O. Outline of the SECOQC quantum-key-distribution network in vienna. Int J Quantum Inform, 2008, 6: 209–218

    Article  Google Scholar 

  21. Wang S, Chen W, Yin Z Q, et al. Field test of wavelength-saving quantum key distribution network. Opt Lett, 2010, 35: 2454

    Article  Google Scholar 

  22. Chen T Y, Wang J, Liang H, et al. Metropolitan all-pass and inter-city quantum communication network. Opt Express, 2010, 18: 27217–27225

    Article  Google Scholar 

  23. Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt Express, 2011, 19: 10387–10409

    Article  Google Scholar 

  24. Wang S, Chen W, Yin Z Q, et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt Express, 2014, 22: 21739–21756

    Article  Google Scholar 

  25. Yang Y, Yang J, Zhou Y, et al. Quantum network communication: a discrete-time quantum-walk approach. Sci China Inf Sci, 2018, 61: 042501

    Article  MathSciNet  Google Scholar 

  26. Li Z Z, Xu G, Chen X B, et al. Efficient quantum state transmission via perfect quantum network coding. Sci China Inf Sci, 2019, 62: 012501

    Article  Google Scholar 

  27. Wang F, Luo M X, Xu G, et al. Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity. Sci China Phys Mech Astron, 2018, 61: 060312

    Article  Google Scholar 

  28. Zou Z Z, Yu X T, Zhang Z C. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network. Front Phys, 2018, 13: 130202

    Article  Google Scholar 

  29. Wang Y, Li J, Zhang S, et al. Efficient quantum memory for single-photon polarization qubits. Nat Photon, 2019, 13: 346–351

    Article  Google Scholar 

  30. Guo J, Feng X, Yang P, et al. High-performance Raman quantum memory with optimal control in room temperature atoms. Nat Commun, 2019, 10: 148

    Article  Google Scholar 

  31. Hosseini M, Sparkes B M, Hétet G, et al. Coherent optical pulse sequencer for quantum applications. Nature, 2009, 461: 241–245

    Article  Google Scholar 

  32. Hedges M P, Longdell J J, Li Y, et al. Efficient quantum memory for light. Nature, 2010, 465: 1052–1056

    Article  Google Scholar 

  33. Clausen C, Usmani I, Bussiéres F, et al. Quantum storage of photonic entanglement in a crystal. Nature, 2011, 469: 508–511

    Article  Google Scholar 

  34. Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys Rev Lett, 1998, 81: 5932–5935

    Article  Google Scholar 

  35. Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414: 413–418

    Article  Google Scholar 

  36. Braunstein S L, van Loock P. Quantum information with continuous variables. Rev Mod Phys, 2005, 77: 513–577

    Article  MathSciNet  MATH  Google Scholar 

  37. Weedbrook C, Pirandola S, García-Patrón R, et al. Gaussian quantum information. Rev Mod Phys, 2012, 84: 621–669

    Article  Google Scholar 

  38. Wang X B, Hiroshima T, Tomita A, et al. Quantum information with Gaussian states. Phys Rep, 2007, 448: 1–111

    Article  MathSciNet  Google Scholar 

  39. van Loock P, Braunstein S L. Multipartite entanglement for continuous variables: a quantum teleportation network. Phys Rev Lett, 2000, 84: 3482–3485

    Article  Google Scholar 

  40. Yonezawa H, Aoki T, Furusawa A. Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431: 430–433

    Article  Google Scholar 

  41. Jing J, Zhang J, Yan Y, et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys Rev Lett, 2003, 90: 167903

    Article  Google Scholar 

  42. Gu M, Weedbrook C, Menicucci N C, et al. Quantum computing with continuous-variable clusters. Phys Rev A, 2009, 79: 062318

    Article  Google Scholar 

  43. Zhang J, Braunstein S L. Continuous-variable Gaussian analog of cluster states. Phys Rev A, 2006, 73: 032318

    Article  Google Scholar 

  44. van Loock P, Weedbrook C, Gu M. Building Gaussian cluster states by linear optics. Phys Rev A, 2007, 76: 032321

    Article  Google Scholar 

  45. Su X, Wang W, Wang Y, et al. Continuous variable quantum key distribution based on optical entangled states without signal modulation. EPL, 2009, 87: 20005

    Article  Google Scholar 

  46. Li Z, Zhang Y C, Xu F, et al. Continuous-variable measurement-device-independent quantum key distribution. Phys Rev A, 2014, 89: 052301

    Article  Google Scholar 

  47. Ma X C, Sun S H, Jiang M S, et al. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys Rev A, 2014, 89: 042335

    Article  Google Scholar 

  48. Wang N, Du S, Liu W, et al. Long-distance continuous-variable quantum key distribution with entangled states. Phys Rev Appl, 2018, 10: 064028

    Article  Google Scholar 

  49. Chai G, Li D, Cao Z, et al. Blind channel estimation for continuous–variable quantum key distribution. Quantum Eng, 2020, 2: e37

    Article  Google Scholar 

  50. He M, Malaney R, Green J. Multimode CV-QKD with non-Gaussian operations. Quantum Eng, 2020, 2: e40

    Article  Google Scholar 

  51. Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A, 2008, 78: 042333

    Article  Google Scholar 

  52. Lydersen L, Wiechers C, Wittmann C, et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photon, 2010, 4: 686–689

    Article  Google Scholar 

  53. Xu F, Qi B, Lo H K. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J Phys, 2010, 12: 113026

    Article  Google Scholar 

  54. Mayers D, Yao A. Quantum cryptography with imperfect apparatus. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, 1998. 503–509

  55. Acín A, Brunner N, Gisin N, et al. Device-independent security of quantum cryptography against collective attacks. Phys Rev Lett, 2007, 98: 230501

    Article  Google Scholar 

  56. Braunstein S L, Pirandola S. Side-channel-free quantum key distribution. Phys Rev Lett, 2012, 108: 130502

    Article  Google Scholar 

  57. Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett, 2012, 108: 130503

    Article  Google Scholar 

  58. Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117: 190501

    Article  Google Scholar 

  59. Liu H, Wang W, Wei K, et al. Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels. Phys Rev Lett, 2019, 122: 160501

    Article  Google Scholar 

  60. Cui Z X, Zhong W, Zhou L, et al. Measurement-device-independent quantum key distribution with hyper-encoding. Sci China Phys Mech Astron, 2019, 62: 110311

    Article  Google Scholar 

  61. Roslund J, de Araújo R M, Jiang S, et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat Photon, 2014, 8: 109–112

    Article  Google Scholar 

  62. Feng J, Wan Z, Li Y, et al. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20 km of optical fiber. Opt Lett, 2017, 42: 3399

    Article  Google Scholar 

  63. Huo M, Qin J, Cheng J, et al. Deterministic quantum teleportation through fiber channels. Sci Adv, 2018, 4: eaas9401

    Article  Google Scholar 

  64. Cubitt T S, Verstraete F, Duür W, et al. Separable states can be used to distribute entanglement. Phys Rev Lett, 2003, 91: 037902

    Article  Google Scholar 

  65. Mišta J L, Korolkova N. Improving continuous-variable entanglement distribution by separable states. Phys Rev A, 2009, 80: 032310

    Article  Google Scholar 

  66. Fedrizzi A, Zuppardo M, Gillett G G, et al. Experimental distribution of entanglement with separable carriers. Phys Rev Lett, 2013, 111: 230504

    Article  Google Scholar 

  67. Vollmer C E, Schulze D, Eberle T, et al. Experimental entanglement distribution by separable states. Phys Rev Lett, 2013, 111: 230505

    Article  Google Scholar 

  68. Peuntinger C, Chille V, Mišta J L, et al. Distributing entanglement with separable states. Phys Rev Lett, 2013, 111: 230506

    Article  Google Scholar 

  69. Zuppardo M, Krisnanda T, Paterek T, et al. Excessive distribution of quantum entanglement. Phys Rev A, 2016, 93: 012305

    Article  Google Scholar 

  70. Xiang Y, Su X, Mišta J L, et al. Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. Phys Rev A, 2019, 99: 010104

    Article  Google Scholar 

  71. Jing J, Xie C, Peng K. Tripartite entanglement swapping of bright light beams. Nonlinear Opt Quantum Opt, 2003, 30: 89–102

    Google Scholar 

  72. Kómár P, Kessler E M, Bishof M, et al. A quantum network of clocks. Nat Phys, 2014, 10: 582–587

    Article  Google Scholar 

  73. Zukowski M, Zeilinger A, Horne M A, et al. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290

    Article  Google Scholar 

  74. Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891–3894

    Article  MathSciNet  MATH  Google Scholar 

  75. Sciarrino F, Lombardi E, Milani G, et al. Delayed-choice entanglement swapping with vacuum-one-photon quantum states. Phys Rev A, 2002, 66: 024309

    Article  Google Scholar 

  76. de Riedmatten H, Marcikic I, van Houwelingen J A W, et al. Long-distance entanglement swapping with photons from separated sources. Phys Rev A, 2005, 71: 050302

    Article  Google Scholar 

  77. Tan S M. Confirming entanglement in continuous variable quantum teleportation. Phys Rev A, 1999, 60: 2752–2758

    Article  Google Scholar 

  78. van Loock P, Braunstein S L. Unconditional teleportation of continuous-variable entanglement. Phys Rev A, 1999, 61: 010302

    Article  MathSciNet  Google Scholar 

  79. Jia X, Su X, Pan Q, et al. Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys Rev Lett, 2004, 93: 250503

    Article  Google Scholar 

  80. Takei N, Yonezawa H, Aoki T, et al. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys Rev Lett, 2005, 94: 220502

    Article  Google Scholar 

  81. Yang L, Liu Y C, Li Y S. Quantum teleportation of particles in an environment. Chin Phys B, 2020, 29: 060301

    Article  Google Scholar 

  82. Takeda S, Fuwa M, van Loock P, et al. Entanglement swapping between discrete and continuous variables. Phys Rev Lett, 2015, 114: 100501

    Article  Google Scholar 

  83. Andersen U L, Neergaard-Nielsen J S, van Loock P, et al. Hybrid discrete- and continuous-variable quantum information. Nat Phys, 2015, 11: 713–719

    Article  Google Scholar 

  84. Su X, Tian C, Deng X, et al. Quantum entanglement swapping between two multipartite entangled states. Phys Rev Lett, 2016, 117: 240503

    Article  Google Scholar 

  85. Tian C, Han D, Wang Y, et al. Connecting two Gaussian cluster states by quantum entanglement swapping. Opt Express, 2018, 26: 29159–29169

    Article  Google Scholar 

  86. Wu Y, Zhou J, Gong X, et al. Continuous-variable measurement-device-independent multipartite quantum communication. Phys Rev A, 2016, 93: 022325

    Article  Google Scholar 

  87. Wang Y, Tian C X, Su Q, et al. Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state. Sci China Inf Sci, 2019, 62: 072501

    Article  MathSciNet  Google Scholar 

  88. Tomamichel M, Renner R. Uncertainty relation for smooth entropies. Phys Rev Lett, 2011, 106: 110506

    Article  Google Scholar 

  89. Branciard C, Cavalcanti E G, Walborn S P, et al. One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys Rev A, 2012, 85: 010301

    Article  Google Scholar 

  90. Walk N, Hosseini S, Geng J, et al. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica, 2016, 3: 634–642

    Article  Google Scholar 

  91. Gehring T, Händchen V, Duhme J, et al. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat Commun, 2015, 6: 8795

    Article  Google Scholar 

  92. Gallego R, Aolita L. Resource theory of steering. Phys Rev X, 2015, 5: 041008

    MATH  Google Scholar 

  93. Reid M D. Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities. Phys Rev A, 2013, 88: 062338

    Article  Google Scholar 

  94. He Q, Rosales-Zárate L, Adesso G, et al. Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering. Phys Rev Lett, 2015, 115: 180502

    Article  Google Scholar 

  95. Chiu C Y, Lambert N, Liao T L, et al. No-cloning of quantum steering. npj Quantum Inf, 2016, 2: 16020

    Article  Google Scholar 

  96. Piani M, Watrous J. Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. Phys Rev Lett, 2015, 114: 060404

    Article  MathSciNet  Google Scholar 

  97. Midgley S L W, Ferris A J, Olsen M K. Asymmetric Gaussian steering: when Alice and Bob disagree. Phys Rev A, 2010, 81: 022101

    Article  Google Scholar 

  98. He Q Y, Gong Q H, Reid M D. Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord. Phys Rev Lett, 2015, 114: 060402

    Article  Google Scholar 

  99. Kogias I, Lee A R, Ragy S, et al. Quantification of Gaussian quantum steering. Phys Rev Lett, 2015, 114: 060403

    Article  Google Scholar 

  100. Rosales-Zárate L, Teh R Y, Kiesewetter S, et al. Decoherence of Einstein-Podolsky-Rosen steering. J Opt Soc Am B, 2015, 32: A82–A91

    Article  Google Scholar 

  101. Händchen V, Eberle T, Steinlechner S, et al. Observation of one-way Einstein-Podolsky-Rosen steering. Nat Photon, 2012, 6: 596–599

    Article  Google Scholar 

  102. Wollmann S, Walk N, Bennet A J, et al. Observation of genuine one-way Einstein-Podolsky-Rosen steering. Phys Rev Lett, 2016, 116: 160403

    Article  Google Scholar 

  103. Sun K, Ye X J, Xu J S, et al. Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering. Phys Rev Lett, 2016, 116: 160404

    Article  Google Scholar 

  104. Armstrong S, Wang M, Teh R Y, et al. Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks. Nat Phys, 2015, 11: 167–172

    Article  Google Scholar 

  105. Cavalcanti D, Skrzypczyk P, Aguilar G H, et al. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nat Commun, 2015, 6: 7941

    Article  Google Scholar 

  106. Li C M, Chen K, Chen Y N, et al. Genuine high-order Einstein-Podolsky-Rosen steering. Phys Rev Lett, 2015, 115: 010402

    Article  Google Scholar 

  107. Deng X, Xiang Y, Tian C, et al. Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states. Phys Rev Lett, 2017, 118: 230501

    Article  Google Scholar 

  108. Qin Z, Deng X, Tian C, et al. Manipulating the direction of Einstein-Podolsky-Rosen steering. Phys Rev A, 2017, 95: 052114

    Article  Google Scholar 

  109. Wang M, Qin Z, Su X. Swapping of Gaussian Einstein-Podolsky-Rosen steering. Phys Rev A, 2017, 95: 052311

    Article  Google Scholar 

  110. Wang M, Qin Z, Wang Y, et al. Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states. Phys Rev A, 2017, 96: 022307

    Article  Google Scholar 

  111. Wang M, Deng X, Qin Z, et al. Einstein-Podolsky-Rosen steering in Gaussian weighted graph states. Phys Rev A, 2019, 100: 022328

    Article  MathSciNet  Google Scholar 

  112. Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency. Phys Rev Lett, 2000, 84: 5094–5097

    Article  Google Scholar 

  113. Jensen K, Wasilewski W, Krauter H, et al. Quantum memory for entangled continuous-variable states. Nat Phys, 2011, 7: 13–16

    Article  Google Scholar 

  114. Zhang H, Jin X M, Yang J, et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat Photon, 2011, 5: 628–632

    Article  Google Scholar 

  115. Ding D S, Zhou Z Y, Shi B S, et al. Single-photon-level quantum image memory based on cold atomic ensembles. Nat Commun, 2013, 4: 2527

    Article  Google Scholar 

  116. Reim K F, Nunn J, Lorenz V O, et al. Towards high-speed optical quantum memories. Nat Photon, 2010, 4: 218–221

    Article  Google Scholar 

  117. Ding D S, Zhang W, Zhou Z Y, et al. Raman quantum memory of photonic polarized entanglement. Nat Photon, 2015, 9: 332–338

    Article  Google Scholar 

  118. Cho Y W, Campbell G T, Everett J L, et al. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica, 2016, 3: 100

    Article  Google Scholar 

  119. Saglamyurek E, Sinclair N, Jin J, et al. Broadband waveguide quantum memory for entangled photons. Nature, 2011, 469: 512–515

    Article  Google Scholar 

  120. Zhong M, Hedges M P, Ahlefeldt R L, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature, 2015, 517: 177–180

    Article  Google Scholar 

  121. Yang T S, Zhou Z Q, Hua Y L, et al. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat Commun, 2018, 9: 3407

    Article  Google Scholar 

  122. Xu Z, Wu Y, Tian L, et al. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy. Phys Rev Lett, 2013, 111: 240503

    Article  Google Scholar 

  123. Nicolas A, Veissier L, Giner L, et al. A quantum memory for orbital angular momentum photonic qubits. Nat Photon, 2014, 8: 234–238

    Article  Google Scholar 

  124. Vernaz-Gris P, Huang K, Cao M, et al. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat Commun, 2018, 9: 363

    Article  Google Scholar 

  125. Honda K, Akamatsu D, Arikawa M, et al. Storage and retrieval of a squeezed vacuum. Phys Rev Lett, 2008, 100: 093601

    Article  Google Scholar 

  126. Appel J, Figueroa E, Korystov D, et al. Quantum memory for squeezed light. Phys Rev Lett, 2008, 100: 093602

    Article  Google Scholar 

  127. Ding D S, Zhang W, Zhou Z Y, et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys Rev Lett, 2015, 114: 050502

    Article  Google Scholar 

  128. Yan Z, Wu L, Jia X, et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles. Nat Commun, 2017, 8: 718

    Article  Google Scholar 

  129. Yuan Z S, Chen Y A, Zhao B, et al. Experimental demonstration of a BDCZ quantum repeater node. Nature, 2008, 454: 1098–1101

    Article  Google Scholar 

  130. Chen L K, Yong H L, Xu P, et al. Experimental nested purification for a linear optical quantum repeater. Nat Photon, 2017, 11: 695–699

    Article  Google Scholar 

  131. Kalb N, Reiserer A A, Humphreys P C, et al. Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356: 928–932

    Article  MathSciNet  MATH  Google Scholar 

  132. Bhaskar M K, Riedinger R, Machielse B, et al. Experimental demonstration of memory-enhanced quantum communication. Nature, 2020, 580: 60–64

    Article  Google Scholar 

  133. Yu Y, Ma F, Luo X Y, et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 2020, 578: 240–245

    Article  Google Scholar 

  134. Azuma K, Tamaki K, Lo H K. All-photonic quantum repeaters. Nat Commun, 2015, 6: 6787

    Article  Google Scholar 

  135. Buterakos D, Barnes E, Economou S E. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys Rev X, 2017, 7: 041023

    Google Scholar 

  136. Li Z D, Zhang R, Yin X F, et al. Experimental quantum repeater without quantum memory. Nat Photon, 2019, 13: 644–648

    Article  Google Scholar 

  137. Hasegawa Y, Ikuta R, Matsuda N, et al. Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters. Nat Commun, 2019, 10: 378

    Article  Google Scholar 

  138. Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549: 70–73

    Article  Google Scholar 

  139. Zhang Q Y, Xu P, Zhu S N. Quantum photonic network on chip. Chin Phys B, 2018, 27: 054207

    Article  Google Scholar 

  140. Wang J, Paesani S, Ding Y, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360: 285–291

    Article  MathSciNet  MATH  Google Scholar 

  141. Qiang X, Zhou X, Wang J, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photon, 2018, 12: 534–539

    Article  Google Scholar 

  142. Feng L T, Zhang M, Xiong X, et al. On-chip transverse-mode entangled photon pair source. npj Quantum Inf, 2019, 5: 2

    Article  Google Scholar 

  143. Llewellyn D, Ding Y, Faruque I I, et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat Phys, 2020, 16: 148–153

    Article  Google Scholar 

  144. Masada G, Miyata K, Politi A, et al. Continuous-variable entanglement on a chip. Nat Photon, 2015, 9: 316–319

    Article  Google Scholar 

  145. Lenzini F, Janousek J, Thearle O, et al. Integrated photonic platform for quantum information with continuous variables. Sci Adv, 2018, 4: eaat9331

    Article  Google Scholar 

  146. Otterpohl A, Sedlmeir F, Vogl U, et al. Squeezed vacuum states from a whispering gallery mode resonator. Optica, 2019, 6: 1375

    Article  Google Scholar 

  147. Tang H, Franco C D, Shi Z Y, et al. Experimental quantum fast hitting on hexagonal graphs. Nat Photon, 2018, 12: 754–758

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11834010, 61925503, 61775127), Key Project of the National Key R&D program of China (Grant No. 2016YFA0301402), Applied Basic Research Program of Shanxi Province (Grant No. 201901D211164), and Fund for Shanxi “1331 Project” Key Subjects Construction.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Su or Xiaojun Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Wang, M., Yan, Z. et al. Quantum network based on non-classical light. Sci. China Inf. Sci. 63, 180503 (2020). https://doi.org/10.1007/s11432-020-2953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2953-y

Keywords

Navigation