Skip to main content
Log in

Generation of two-axis countertwisting squeezed spin states via Uhrig dynamical decoupling

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We propose a scheme to generate two-axis countertwisting squeezed spin states from a one-axis twisting Hamiltonian via Uhrig dynamical decoupling. The proposed scheme significantly reduces the number of control pulses or requires shorter evolution time compared to previous proposals. The minimum number of applied pulses changes relative to the spin number almost linearly. The proposed scheme significantly relieves the experimental demand on the applied pulses or the evolution time, and we expect it would be within the reach of current spin squeezing experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kitagawa M, Ueda M. Squeezed spin states. Phys Rev A, 1993, 47: 5138–5143

    Article  Google Scholar 

  2. Wineland D J, Bollinger J J, Itano W M, et al. Spin squeezing and reduced quantum noise in spectroscopy. Phys Rev A, 1992, 46: R6797–R6800

    Article  Google Scholar 

  3. Wineland D J, Bollinger J J, Itano W M, et al. Squeezed atomic states and projection noise in spectroscopy. Phys Rev A, 1994, 50: 67–88

    Article  Google Scholar 

  4. Ma J, Wang X G, Sun C P, et al. Quantum spin squeezing. Phys Rep, 2011, 509: 89–165

    Article  MathSciNet  Google Scholar 

  5. Bollinger J J, Itano W M, Wineland D J, et al. Optimal frequency measurements with maximally correlated states. Phys Rev A, 1996, 54: R4649–R4652

    Article  Google Scholar 

  6. Leibfried D, Barrett M D, Schaetz T, et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science, 2004, 304: 1476–1478

    Article  Google Scholar 

  7. Polzik E S. Quantum physics: the squeeze goes on. Nature, 2008, 453: 45–46

    Article  Google Scholar 

  8. Cronin A D, Schmiedmayer J, Pritchard D E. Optics and interferometry with atoms and molecules. Rev Mod Phys, 2009, 81: 1051–1129

    Article  Google Scholar 

  9. Appel J, Windpassinger P J, Oblak D, et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc Natl Acad Sci USA, 2009, 106: 10960–10965

    Article  Google Scholar 

  10. Gross C, Zibold T, Nicklas E, et al. Nonlinear atom interferometer surpasses classical precision limit. Nature, 2010, 464: 1165–1169

    Article  Google Scholar 

  11. Riedel M F, Böhi P, Li Y, et al. Atom-chip-based generation of entanglement for quantum metrology. Nature, 2010, 464: 1170–1173

    Article  Google Scholar 

  12. Sørensen A, Duan L M, Cirac J I, et al. Many-particle entanglement with Bose-Einstein condensates. Nature, 2001, 409: 63–66

    Article  Google Scholar 

  13. Bigelow N. Quantum engineering: squeezing entanglement. Nature, 2001, 409: 27–28

    Article  Google Scholar 

  14. Sørensen A S, Mølmer K. Entanglement and extreme spin squeezing. Phys Rev Lett, 2001, 86: 4431–4434

    Article  Google Scholar 

  15. Korbicz J K, Cirac J I, Lewenstein M. Spin squeezing inequalities and entanglement of n qubit states. Phys Rev Lett, 2005, 95: 120502

    Article  Google Scholar 

  16. Huang H L, Wu D C, Fan D J, et al. Superconducting quantum computing: a review. Sci China Inf Sci, 2020, 63: 180501

    Article  MathSciNet  Google Scholar 

  17. Amico L, Fazio R, Osterloh A, et al. Entanglement in many-body systems. Rev Mod Phys, 2008, 80: 517–576

    Article  MathSciNet  Google Scholar 

  18. Xi Q, Wei S H, Yuan C Z, et al. Experimental observation of coherent interaction between laser and erbium ions ensemble doped in fiber at sub 10 mK. Sci China Inf Sci, 2020, 63: 180505

    Article  Google Scholar 

  19. Pezzé L, Smerzi A. Entanglement, nonlinear dynamics, and the heisenberg limit. Phys Rev Lett, 2009, 102: 100401

    Article  MathSciNet  Google Scholar 

  20. Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement. Rev Mod Phys, 2009, 81: 865–942

    Article  MathSciNet  Google Scholar 

  21. Gühne O, Tóth G. Entanglement detection. Phys Rep, 2009, 474: 1–75

    Article  MathSciNet  Google Scholar 

  22. Lee T E, Chan C K. Dissipative transverse-field ising model: steady-state correlations and spin squeezing. Phys Rev A, 2013, 88: 063811

    Article  Google Scholar 

  23. Zhang Y C, Zhou X F, Zhou X X, et al. Cavity-assisted single-mode and two-mode spin-squeezed states via phase-locked atom-photon coupling. Phys Rev Lett, 2017, 118: 083604

    Article  Google Scholar 

  24. Su X L, Wang M H, Yan Z H, et al. Quantum network based on non-classical light. Sci China Inf Sci, 2020, 63: 180503

    Article  MathSciNet  Google Scholar 

  25. Liu Y C, Xu Z F, Jin G R, et al. Spin squeezing: transforming one-axis twisting into two-axis twisting. Phys Rev Lett, 2011, 107: 013601

    Article  Google Scholar 

  26. Shen C, Duan L M. Efficient spin squeezing with optimized pulse sequences. Phys Rev A, 2013, 87: 051801

    Article  Google Scholar 

  27. Zhang J Y, Zhou X F, Guo G C, et al. Dynamical spin squeezing via a higher-order Trotter-Suzuki approximation. Phys Rev A, 2014, 90: 013604

    Article  Google Scholar 

  28. Wu L N, Tey M K, You L. Persistent atomic spin squeezing at the Heisenberg limit. Phys Rev A, 2015, 92: 063610

    Article  Google Scholar 

  29. Huang W, Zhang Y L, Zou C L, et al. Two-axis spin squeezing of two-component Bose-Einstein condensates via continuous driving. Phys Rev A, 2015, 91: 043642

    Article  Google Scholar 

  30. Chaudhry A Z, Gong J B. Protecting and enhancing spin squeezing via continuous dynamical decoupling. Phys Rev A, 2012, 86: 012311

    Article  Google Scholar 

  31. Uhrig G S. Keeping a quantum bit alive by optimized π-pulse sequences. Phys Rev Lett, 2007, 98: 100504

    Article  Google Scholar 

  32. Uhrig G S. Erratum: keeping a quantum bit alive by optimized π-pulse sequences. Phys Rev Lett, 2011, 106: 129901

    Article  Google Scholar 

  33. Yang W, Wang Z Y, Liu R B. Preserving qubit coherence by dynamical decoupling. Front Phys, 2011, 6: 2–14

    Article  Google Scholar 

  34. Edri E, Raz B, Fleurov G, et al. Measuring interactions in a Bose-Einstein condensate using imbalanced dynamical decoupling. 2020. ArXiv:2003.13101v1

  35. Micheli A, Jaksch D, Cirac J I, et al. Many-particle entanglement in two-component Bose-Einstein condensates. Phys Rev A, 2003, 67: 013607

    Article  Google Scholar 

  36. Tan Q S, Huang Y X, Kuang L M, et al. Dephasing-assisted parameter estimation in the presence of dynamical decoupling. Phys Rev A, 2014, 89: 063604

    Article  Google Scholar 

  37. Xu P, Sun H Y, Yi S, et al. Rebuilding of destroyed spin squeezing in noisy environments. Sci Rep, 2017, 7: 14102

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11547244, 11547208, 11974334), and the Foundation of Collaborative Innovation Team of Discipline Characteristics of Jianghan University (Grant No. 03100061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiying Zhang or Zhengwei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wu, S., Zhang, Y. et al. Generation of two-axis countertwisting squeezed spin states via Uhrig dynamical decoupling. Sci. China Inf. Sci. 64, 122502 (2021). https://doi.org/10.1007/s11432-020-3075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3075-2

Keywords

Navigation