Skip to main content
Log in

Filling the gap: thermal properties and device applications of graphene

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

With the miniaturization and integration of electronic devices, the heat dissipation problems caused by higher power density are getting more serious, limiting the development of integrated circuits industry. Graphene, as a representative of two-dimensional materials, has attracted extensive attention for its excellent thermal properties. Ever since it has been discovered, researches have been carried out and achievements have been made both theoretically and practically. Here, we review the established theories and simulation system for 2D heat conduction, different measurement methods for thermal conductivity and graphene’s device applications. We propose two gaps between different scales and between theoretical prediction and practical effect. Owing to the higher heat dissipation requirements and the endless pursuit of better thermal performance, it is challenging but critical to continue studying and further understand the thermal properties of graphene. Challenges and opportunities are both emphasized. It is hoped that the diversification and progress in morphology and manufacturing technology can bring new development and that graphene can eventually be widely used and make huge changes to micoelectronic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  2. Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8: 902–907

    Article  Google Scholar 

  3. Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nat Mater, 2011, 10: 569–581

    Article  Google Scholar 

  4. Zhang Z, Ouyang Y, Cheng Y, et al. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys Rep, 2020, 860: 1–26

    Article  MathSciNet  Google Scholar 

  5. Nakazawa H. Energy flow in harmonic linear chain. Prog Theor Phys, 1968, 39: 236–238

    Article  Google Scholar 

  6. Rieder Z, Lebowitz J L, Lieb E. Properties of a harmonic crystal in a stationary nonequilibrium state. J Math Phys, 1967, 8: 1073–1078

    Article  Google Scholar 

  7. Lepri S, Livi R, Politi A. Heat conduction in chains of nonlinear oscillators. Phys Rev Lett, 1997, 78: 1896–1899

    Article  Google Scholar 

  8. Lepri S, Livi R, Politi A. On the anomalous thermal conductivity of one-dimensional lattices. Europhys Lett, 1998, 43: 271–276

    Article  Google Scholar 

  9. Grassberger P, Nadler W, Yang L. Heat conduction and entropy production in a one-dimensional hard-particle gas. Phys Rev Lett, 2002, 89: 180601

    Article  Google Scholar 

  10. Hatano K. Error analysis for scaling coefficients and wavelet coefficients that are derived from the trapezoidal rule. Surikaisekikenkyusho Kokyuroku, 1999, 1084: 1–15

    MathSciNet  MATH  Google Scholar 

  11. Lepri S. Relaxation of classical many-body Hamiltonians in one dimension. Phys Rev E, 1998, 58: 7165–7171

    Article  Google Scholar 

  12. Narayan O, Ramaswamy S. Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys Rev Lett, 2002, 89: 200601

    Article  Google Scholar 

  13. Pereverzev A. Fermi-Pasta-Ulam beta lattice: Peierls equation and anomalous heat conductivity. Phys Rev E, 2003, 68: 056124

    Article  MathSciNet  Google Scholar 

  14. Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett, 2008, 92: 151911

    Article  Google Scholar 

  15. Xie G, Ding D, Zhang G. Phonon coherence and its effect on thermal conductivity of nanostructures. Adv Phys-X, 2018, 3: 1480417

    Google Scholar 

  16. Zhang G, Duan W H. Thermal properties of low-dimensional nanoscale materials (in Chinese). Physics, 2020, 49: 668–678

    Google Scholar 

  17. Klemens P G. Thermal conductivity and lattice vibrational modes. Solid State Phys, 1958, 7: 1–98

    Article  Google Scholar 

  18. Callaway J. Model for lattice thermal conductivity at low temperatures. Phys Rev, 1959, 113: 1046–1051

    Article  MATH  Google Scholar 

  19. Parrott J E, Stuckes A D, Klemens P G. Thermal conductivity of solids. Phys Today, 1977, 30: 60–63

    Article  Google Scholar 

  20. Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B, 2002, 65: 144306

    Article  Google Scholar 

  21. Lindsay L, Broido D A, Mingo N. Flexural phonons and thermal transport in graphene. Phys Rev B, 2010, 82: 115427

    Article  Google Scholar 

  22. Khadem M H, Wemhoff A P. Molecular dynamics predictions of the influence of graphite stacking arrangement on the thermal conductivity tensor. Chem Phys Lett, 2013, 574: 78–82

    Article  Google Scholar 

  23. Nika D L, Pokatilov E P, Askerov A S, et al. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B, 2009, 79: 155413

    Article  Google Scholar 

  24. Evans W J, Hu L, Keblinski P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl Phys Lett, 2010, 96: 203112

    Article  Google Scholar 

  25. Adamyan V, Zavalniuk V. Phonons in graphene with point defects. J Phys-Condens Matter, 2011, 23: 015402

    Article  Google Scholar 

  26. Adamyan V, Zavalniuk V. Lattice thermal conductivity of graphene with conventionally isotopic defects. J Phys-Condens Matter, 2012, 24: 415401

    Article  Google Scholar 

  27. Srivastava G P, Kresin V. The physics of phonons. Phys Today, 1991, 44: 75–76

    Article  Google Scholar 

  28. Omini M, Sparavigna A. An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Phys B-Condensed Matter, 1995, 212: 101–112

    Article  Google Scholar 

  29. Broido D A, Ward A, Mingo N. Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys Rev B, 2005, 72: 014308

    Article  Google Scholar 

  30. Lindsay L, Broido D A, Mingo N. Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys Rev B, 2009, 80: 125407

    Article  Google Scholar 

  31. Wang Y, Vallabhaneni A K, Qiu B, et al. Two-dimensional thermal transport in graphene: a review of numerical modeling studies. Nanoscale Microscale Thermophys Eng, 2014, 18: 155–182

    Article  Google Scholar 

  32. Wang J S, Agarwalla B K, Li H, et al. Nonequilibrium Green’s function method for quantum thermal transport. Front Phys, 2014, 9: 673–697

    Article  Google Scholar 

  33. Zhang W, Fisher T S, Mingo N. The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer Heat Transfer Part B-Fundamentals, 2007, 51: 333–349

    Article  Google Scholar 

  34. Gu X, Yang R. Phonon transport and thermal conductivity in two-dimensional materials. Annu Rev Heat Transfer, 2016, 19: 1–65

    Article  Google Scholar 

  35. Kaviani M. Heat Transfer Physics. 2nd ed. Cambridge: Cambridge University Press, 2014

    Book  Google Scholar 

  36. Chou F C, Lukes J R, Liang X G, et al. Molecular dynamics in microscale thermophysical engineering. Annu Rev Heat Transfer, 1999, 10: 141–176

    Article  Google Scholar 

  37. Evans D J. Homogeneous NEMD algorithm for thermal conductivity: application of non-canonical linear response theory. Phys Lett A, 1982, 91: 457–460

    Article  Google Scholar 

  38. Ikeshoji T, Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol Phys, 1994, 81: 251–261

    Article  Google Scholar 

  39. Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys, 1997, 106: 6082–6085

    Article  Google Scholar 

  40. Ren X X, Kang W, Cheng Z F, et al. Temperature-dependent debye temperature and specific capacity of graphene. Chin Phys Lett, 2016, 33: 126501

    Article  Google Scholar 

  41. Rapaport D C. Molecular dynamics simulation. Comput Sci Eng, 1999, 1: 70–71

    Article  Google Scholar 

  42. Chen X K, Xie Z X, Zhou W X, et al. Phonon wave interference in graphene and boron nitride superlattice. Appl Phys Lett, 2016, 109: 023101

    Article  Google Scholar 

  43. Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc, 1943, 49: 1–24

    Article  MathSciNet  MATH  Google Scholar 

  44. Clough R W. The finite element method in plane stress analysis. In: Proceedings of ASCE Conference on Electronic Computation, 1960

  45. Mortazavi B, Benzerara O, Meyer H, et al. Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon, 2013, 60: 356–365

    Article  Google Scholar 

  46. Cahill D G. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev Sci Instruments, 1990, 61: 802–808

    Article  Google Scholar 

  47. Fu Y, Hansson J, Liu Y, et al. Graphene related materials for thermal management. 2D Mater, 2020, 7: 012001

    Article  Google Scholar 

  48. Ghosh S, Nika D L, Pokatilov E P, et al. Heat conduction in graphene: experimental study and theoretical interpretation. New J Phys, 2009, 11: 095012

    Article  Google Scholar 

  49. Jauregui L A, Yue Y, Sidorov A N, et al. Thermal transport in graphene nanostructures: experiments and simulations. ECS Trans, 2010, 28: 73–83

    Article  Google Scholar 

  50. Cai W, Moore A L, Zhu Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett, 2010, 10: 1645–1651

    Article  Google Scholar 

  51. Chen Z, Jang W Y, Bao W Z, et al. Heat transfer in encased graphene. In: Proceedings of ASME 2009 Heat Transfer Summer Conference Collocated with the InterPACK09 and 3rd Energy Sustainability Conferences, 2009

  52. Jang W, Chen Z, Bao W, et al. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett, 2010, 10: 3909–3913

    Article  Google Scholar 

  53. Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene. Science, 2010, 328: 213–216

    Article  Google Scholar 

  54. Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater, 2015, 25: 4664–4672

    Article  Google Scholar 

  55. Yang J, Ziade E, Maragliano C, et al. Thermal conductance imaging of graphene contacts. J Appl Phys, 2014, 116: 023515

    Article  Google Scholar 

  56. Faugeras C, Faugeras B, Orlita M, et al. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano, 2010, 4: 1889–1892

    Article  Google Scholar 

  57. Sledzinska M, Graczykowski B, Placidi M, et al. Thermal conductivity of MoS2 polycrystalline nanomembranes. 2D Mater, 2016, 3: 035016

    Article  Google Scholar 

  58. Xu X, Pereira L F C, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun, 2014, 5: 3689

    Article  Google Scholar 

  59. Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport. J Appl Phys, 2003, 93: 793–818

    Article  Google Scholar 

  60. Fukushima H, Drzal L T, Rook B P, et al. Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim, 2006, 85: 235–238

    Article  Google Scholar 

  61. Wei L, Wu F, Shi D, et al. Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene. Sci Rep, 2013, 3: 2636

    Article  Google Scholar 

  62. Chen X K, Zeng Y J, Chen K Q. Thermal transport in two-dimensional heterostructures. Front Mater, 2020, 7: 578791

    Article  Google Scholar 

  63. Liu X, Zhang G, Zhang Y W. Graphene-based thermal modulators. Nano Res, 2015, 8: 2755–2762

    Article  Google Scholar 

  64. Xu W, Zhang G, Li B. Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J Appl Phys, 2014, 116: 134303

    Article  Google Scholar 

  65. Nandanapalli K R, Mudusu D, Lee S. Functionalization of graphene layers and advancements in device applications. Carbon, 2019, 152: 954–985

    Article  Google Scholar 

  66. Zeng Y J, Wu D, Cao X H, et al. Nanoscale organic thermoelectric materials: measurement, theoretical models, and optimization strategies. Adv Funct Mater, 2020, 30: 1903873

    Article  Google Scholar 

  67. Ju Y S, Goodson K E. Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett, 1999, 74: 3005–3007

    Article  Google Scholar 

  68. Yang Y, Liu W, Asheghi M. Thermal and electrical characterization of Cu/CoFe superlattices. Appl Phys Lett, 2004, 84: 3121–3123

    Article  Google Scholar 

  69. Subrina S, Kotchetkov D, Balandin A A. Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. IEEE Electron Device Lett, 2009, 30: 1281–1283

    Article  Google Scholar 

  70. Zhang Y, Edwards M, Samani M K, et al. Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications. Carbon, 2016, 106: 195–201

    Article  Google Scholar 

  71. Gao Z L, Zhang Y, Fu Y F, et al. Graphene heat spreader for thermal management of hot spots in electronic packaging. In: Proceedings of the 18th Therminic International Workshop on Thermal Investigations of ICs and Systems, 2012. 217–220

  72. Gao Z, Zhang Y, Fu Y, et al. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon, 2013, 61: 342–348

    Article  Google Scholar 

  73. Shih M H, Li L J, Yang Y C, et al. Efficient heat dissipation of photonic crystal microcavity by monolayer graphene. ACS Nano, 2013, 7: 10818–10824

    Article  Google Scholar 

  74. Zhang Y, Han H, Wang N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application. Adv Funct Mater, 2015, 25: 4430–4435

    Article  Google Scholar 

  75. Han N, Cuong T V, Han M, et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat Commun, 2013, 4: 1452

    Article  Google Scholar 

  76. Huang S R, Zhang Y, Sun S X, et al. Graphene based heat spreader for high power chip cooling using flip-chip technology. In: Proceedings of IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), 2013. 347–352

  77. Bae S H, Shabani R, Lee J B, et al. Graphene-based heat spreader for flexible electronic devices. IEEE Trans Electron Devices, 2014, 61: 4171–4175

    Article  Google Scholar 

  78. Lee P H, Tu W M, Tseng H C. Graphene heat spreaders for thermal management of InGaP/GaAs collector-up HBTs. IEEE Trans Electron Dev, 2018, 65: 352–355

    Article  Google Scholar 

  79. Li A, Zhang C, Zhang Y F. Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers, 2017, 9: 437

    Article  Google Scholar 

  80. Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett, 2012, 12: 861–867

    Article  Google Scholar 

  81. Shtein M, Nadiv R, Buzaglo M, et al. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater, 2015, 27: 2100–2106

    Article  Google Scholar 

  82. Yavari F, Fard H R, Pashayi K, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C, 2011, 115: 8753–8758

    Article  Google Scholar 

  83. Ji H, Sellan D P, Pettes M T, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci, 2014, 7: 1185–1192

    Article  Google Scholar 

  84. Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manage, 2013, 67: 275–282

    Article  Google Scholar 

  85. Norley J, Tzeng J-W, Klug J. Graphite-based heat sink. Google Patents, US6503626B1, 2003

  86. Hsieh C T, Chen Y F, Lee C E, et al. Heat transport enhancement of heat sinks using Cu-coated graphene composites. Mater Chem Phys, 2017, 197: 105–112

    Article  Google Scholar 

  87. Hu J, Xu J, Zhu C, et al. Significant enhancement of metal heat dissipation from mechanically exfoliated graphene nanosheets through thermal radiation effect. AIP Adv, 2017, 7: 055315

    Article  Google Scholar 

  88. Chu K, Li W, Dong H. Role of graphene waviness on the thermal conductivity of graphene composites. Appl Phys A, 2013, 111: 221–225

    Article  Google Scholar 

  89. Shen X, Wang Z, Wu Y, et al. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett, 2016, 16: 3585–3593

    Article  Google Scholar 

  90. Chen X K, Chen K Q. Thermal transport of carbon nanomaterials. J Phys-Condens Matter, 2020, 32: 153002

    Article  Google Scholar 

  91. Liu X, Zhang G, Zhang Y W. Thermal conduction across graphene cross-linkers. J Phys Chem C, 2014, 118: 12541–12547

    Article  Google Scholar 

  92. Ong Z Y, Zhang G, Zhang Y W. Controlling the thermal conductance of graphene/h-BN lateral interface with strain and structure engineering. Phys Rev B, 2016, 93: 075406

    Article  Google Scholar 

  93. Ci H, Chang H, Wang R, et al. Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer. Adv Mater, 2019, 31: 1901624

    Article  Google Scholar 

  94. Xu S, Wang S, Chen Z, et al. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv Funct Mater, 2020, 30: 2003302

    Article  Google Scholar 

  95. Liang Q, Yao X, Wang W, et al. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano, 2011, 5: 2392–2401

    Article  Google Scholar 

  96. Loeblein M, Tsang S H, Pawlik M, et al. High-density 3D-boron nitride and 3D-graphene for high-performance nano-thermal interface material. ACS Nano, 2017, 11: 2033–2044

    Article  Google Scholar 

  97. Zhamu A, Jang B Z. Chemical-free production of 3D graphene-carbon hybrid foam. Google Patents, US9597657B1, 2017

  98. Moniruzzaman M, Winey K I. Polymer nanocomposites containing carbon nanotubes. Macromolecules, 2006, 39: 5194–5205

    Article  Google Scholar 

  99. Prasher R S, Matayabas J C. Thermal contact resistance of cured gel polymeric thermal interface material. IEEE Trans Compon Packag Tech, 2004, 27: 702–709

    Article  Google Scholar 

  100. Jiang X. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J Semicond, 2019, 40: 062006

    Article  Google Scholar 

  101. Wang X R, Zhou P. Special focus on two-dimensional materials and device applications. Sci China Inf Sci, 2019, 62: 220400

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by China Electronics Technology Group Corporation, Institute of Information Science (Grant No. H1125), National Natural Science Foundation of China (Grant Nos. 62022047, 61874065, 51861145202), National Key R&D Program (Grant No. 2016YFA0200400), Research Fund from Beijing Innovation Center for Future Chip and the Independent Research Program of Tsinghua University (Grant No. 20193080047), Young Elite Scientists Sponsorship Program by CAST (Grant No. 2018QNRC001), and Fok Ying-Tong Education Foundation (Grant No. 171051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Zhang, He Tian or Tian-Ling Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Zhu, RZ., Zhao, SH. et al. Filling the gap: thermal properties and device applications of graphene. Sci. China Inf. Sci. 64, 140401 (2021). https://doi.org/10.1007/s11432-020-3151-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3151-5

Keywords

Navigation