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Abstract Onfocus detection aims at identifying whether the focus of the individual captured by a camera

is on the camera or not. Based on the behavioral research, the focus of an individual during face-to-camera

communication leads to a special type of eye contact, i.e., the individual-camera eye contact, which is a

powerful signal in social communication and plays a crucial role in recognizing irregular individual status

(e.g., lying or suffering mental disease) and special purposes (e.g., seeking help or attracting fans). Thus,

developing effective onfocus detection algorithms is of significance for assisting the criminal investigation,

disease discovery, and social behavior analysis. However, the review of the literature shows that very few

efforts have been made toward the development of onfocus detector owing to the lack of large-scale public

available datasets as well as the challenging nature of this task. To this end, this paper engages in the onfo-

cus detection research by addressing the above two issues. Firstly, we build a large-scale onfocus detection

dataset, named as the onfocus detection in the wild (OFDIW). It consists of 20623 images in unconstrained

capture conditions (thus called “in the wild”) and contains individuals with diverse emotions, ages, facial

characteristics, and rich interactions with surrounding objects and background scenes. On top of that, we

propose a novel end-to-end deep model, i.e., the eye-context interaction inferring network (ECIIN), for on-

focus detection, which explores eye-context interaction via dynamic capsule routing. Finally, comprehensive

experiments are conducted on the proposed OFDIW dataset to benchmark the existing learning models and

demonstrate the effectiveness of the proposed ECIIN.
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1 Introduction

In this work, we define onfocus detection as the task to identify whether the focus of the individual
(human or animal) captured by a camera is on the camera or not, which is performed on images captured
in unconstrained imaging conditions (so-called “in the wild”) as shown in Figure 1. The focus of an
individual during face-to-camera communication leads to individual-camera eye contact, which is a special
type of eye contact and plays a crucial role in social communication. Such eye contact could reflect
irregular individual status (e.g., lying [1] or suffering mental disease [2]) or special purposes (e.g., seeking
help [3] or attracting fans [4]). To this end, onfocus detection tends to be instrumental to a wide range of
real-world applications in the fields of criminal investigation, disease discovery, social behavior analysis
and it also has value for facilitating robots for human-machine interaction and communication.

In spite of its academic value and practical significance, onfocus detection also presents great challenges
in unconstrained capture conditions owing to the complex image scenes, unavoidable occlusion, diverse
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Figure 1 (Color online) Examples to illustrate the onfocus detection task and the challenge scenarios.

face directions and emotions, various facial features (especially for the features of the eyes), and imagery
factors like blur, over-exposure, etc. Some examples to illustrate the challenges of onfocus detection in
the wild (OFDIW) can also be referred to in Figure 1.

According to the existing literature, few efforts have been made toward the onfocus detection problem,
leaving most of the aforementioned challenges under-studied1). Besides, there is not a publicly available
dataset for this task. To advance this research field, this paper establishes a large-scale onfocus detection
dataset called OFDIW. OFDIW consists of 20623 unconstrained images which are collected from the
LFW dataset [6] and the Oxford-IIIT Pet dataset [7], enabling us to study the individual-camera eye
contact for both humans and pets. It is worth mentioning that human-pet communication becomes
prevalent in our daily life. Many people raise pets and some companies raise pets and use them to help
people relieve stress. However, owing to the barrier in language, human-pet communication heavily relies
on eye contact. Thus, we think involving the onfocus study of pets might be beneficial and we thus
choose two of the most common pets, i.e., dog and cat, for our study. Other pets will be studied in the
future. Each image in this dataset is labeled with the corresponding ground-truth, i.e., either onfocus or
out of focus, by human annotators. With the large-scale images and ground-truths, OFDIW can benefit
methods based on the current deep learning models. Besides, the individuals contained in OFDIW have
good diversity in emotions, ages, facial characteristics, and rich interactions with surrounding objects and
background scenes. The samples also satisfy the imbalanced data distribution. All these factors make
OFDIW closer to real-world scenarios. This dataset will be publicly accessible to other researchers to
promote development in this area.

With OFDIW, we can accomplish the onfocus detection task by training the convolutional neural
network (CNN) models, which is basically a classification problem. However, directly applying the
conventional CNN model to classify the input image will not always work as it ignores an important
factor—the eye-context interaction. As we know, eye regions provide critical cues for onfocus detection.
However, by directly performing the conventional CNN model onto the input image, most of the extracted
information actually comes from the context region as the eye region only occupies a very small fraction
of the whole image. Although the context regions are also informative for onfocus detection, using them
as the dominant cue will not obtain the correct onfocus detection results. Another strategy is to first
localize the eye regions and then accomplish onfocus detection based on the features extracted on the eye
regions. This strategy could obtain more accurate detection results. However, in cases when individual’s
gaze has the interaction with the context facial characteristics (e.g., face directions and locations) or
context objects (e.g., balls or other people), the information extracted only from the eye regions is still
insufficient for identifying the focus of the individual precisely (see examples in Figure 2). Thus, designing
effective frameworks to explore eye-context interaction becomes a critical issue.

To address this issue, we propose a novel network model called eye-context interaction inferring network
(ECIIN), in which context CNN extracts features with high activations on eye region, while eye CNN
extracts features with high activations on some more detailed sub-regions in eye region. Then, capsules
of context capsule network (CAP) and eye CAP are learned to reflect the context status and eye status,
respectively. ECIIN is characterized by the following. (1) It is designed with a two-stream network
architecture to extract the features of the eye region and the context region separately and then infer the
eye-context interaction via an interaction inference stream. (2) It has an eye region mining module, which
enables it to mine the important eye regions from each input image without any specific annotation on

1) It is worth mentioning that the method in [5] aims to estimate whether a certain image pixel (from the whole image scene)

is at the camera’s focus distance or not whereas our study tries to estimate whether the person within the image is staring at the

camera or not.
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Figure 2 (Color online) Illustrate the importance of exploring eye-context interaction for onfocus detection. From the examples,

we can observe that onfocus detection by only relying on either the context region (the first block) or the face region (the second

block) may lead to incorrect results while considering the eye-context interaction (the third block) would obtain the correct results.

The images framed with the same color are the same sample. The sample with the red frame shows the interaction of the eye

region and the face direction, while the sample with the blue frame shows the interaction of the eye region and the nearby object,

i.e., the ball.

them. (3) Considering the superior capacity of the capsule network [8] in modeling part-whole relationship
and overcoming view changes, we introduce the dynamic capsule routing scheme into ECIIN to construct
the eye capsules and context capsules, and meanwhile, model the interaction among the eye and context
regions explicitly. To sum up, this work mainly contains three-fold contributions.

• We study the novel onfocus detection task and build a large-scale dataset, i.e., OFDIW. OFDIW
will be publicly available to promote further development of this research field.

• We reveal the main challenges in this task and establish a novel end-to-end deep model, called
ECIIN, to explore the informative eye-context interaction cues for onfocus detection.

• Comprehensive experiments on the OFDIW dataset have been conducted, which benchmarks the
performance of the state-of-the-art eye contact detection, gaze estimation, image categorization networks,
and fine-grained image classification models, and demonstrates the superior capacity of the proposed
ECIIN. The project (containing both datasets and codes) is open at the website2).

2 Related work

Eye contact detection. While this work is closely related to the field of eye contact detection [9–11],
the difference is that eye contact detection mainly studies the eye contact between two humans in face-
to-face communication. Over there, the images or videos are usually captured by wearable imaging
equipment, such as eye-tracking glasses [2,12,13], or in the controlled image capturing setup [14]. Under
this circumstance, the focus of the individual captured by the camera would be dependent on his/her
interaction with the observer wearing the imaging equipment. In contrast, in the investigated onfocus
detection task, we study the individual-camera eye contact. Here, the images are captured by normal
cameras instead of the wearable imaging equipment. Thus, the focuses of the individuals are mainly
dependent on the mental activities or physical status of themselves rather than the interaction with the
observer. Therefore, the image contents presented in the study of the individual-camera eye contact as
well as the messages delivered through the individual-camera eye contact would be different from those
in the common human-human eye contact. To this end, we treat the detection of individual-camera eye
contact as a novel task and name it as onfocus detection. Furthermore, eye contact detection (ECD) is
studied in indoor environment with carefully installed equipment. The images are captured with clear
background and have equal distance to the camera, thus having the constrained imaging conditions. In
contrast, our task is studied in open environments with arbitrary camera locations, thus being ‘in the
wild’. From this perspective, our task is beyond the exploration of ECD.

Gaze estimation. Gaze estimation [15–18] is another related topic to this work, which aims at infer-
ring the continuous gaze directions from images or videos. Gaze estimation usually applies in determining
the user’s point of gaze on a display surface, such as the tablets and laptop screens, to facilitate human-
machine interaction. Gaze estimation methods with this purpose can be used to provide helpful prior
knowledge for eye contact detection and onfocus detection tasks and the methodologies proposed for gaze
estimation can be used to identify potential eye contacts by moderate adjustments. But based on our
investigation, in the studied individual-camera interaction scenario, whether the individual is onfocus or

2) https://github.com/wintercho/focus.



Zhang D W, et al. Sci China Inf Sci June 2022 Vol. 65 160101:4

not plays a major role in the delivery of social communication signal, whereas the specific gaze direction
in out of focus cases is usually without a clear subjective intention or caused by external disturbance. To
this end, onfocus detection is a new research branch on gaze estimation. Notice that onfocus detection
has its own value in practical applications. For example, when judging whether a prisoner is lying or not,
one important sign is to see if the prisoner dares to look at the police in the eye. Under this circumstance,
predicting eye gaze on other locations is not that important. What is more, the gaze estimation systems
would spend more execution time as their algorithms are usually more complicated. Besides, as the
gaze estimation methods are not designed specifically on judging onfocusness, they would have limited
detection accuracy as demonstrated in Section 5. It is worth mentioning that using the annotation of
this task to assist the learning of fine gaze estimation would be another potential research direction to
benefit this community. A new trend in the field of gaze estimation is to predict gaze directions for
multiple persons having group activities and interactions [19,20]. Gaze360 [19] uses the camera as a third
perspective to observe individual interactions between groups. In contrast, we place cameras anywhere
as a first perspective in the scene to study the individual-camera eye contact.

Relevant datasets. There are some existing datasets established for the study of gaze estimation or
eye contact detection, which are relevant to our OFDIW dataset. Among the existing datasets, Columbia
Gaze [14], Eyediap [21], and Gaze360 [19] are three widely used datasets for gaze estimation. However,
these datasets are captured using controlled recording setups, not in real-world scenarios. The images in
the MMDB dataset [22], MPIIGaze dataset [23], and GazeCapture dataset [24] are captured by eyeglasses,
laptop cameras, and smartphones, respectively, in the context of face-to-face communication or human-
machine(screen) interaction. Although these data are relevant to our task, they cannot be directly used
to solve our problem. Taking Gaze360 [19] for example, it has 169935 images but only less than 200
images (0.1%) are onfocus while others are out of focus. Training on such data would be likely to bias
the model towards a trivial solution for our task. This also explains why the state-of-the-art gaze models
trained on the existing datasets cannot obtain good performance on our task. And that well justifies why
spending efforts to establish a novel dataset for our task is necessary. Thus, these data are not suitable
to be used in the study of onfocus detection. Compared to these datasets, OFDIW contains images that
are captured in unconstrained real-world scenarios toward the study of individual-camera eye contact. To
this end, our collected OFDIW cannot be replaced by any existing dataset to study the onfocus detection
problem.

3 The OFDIW dataset

3.1 Image collection, split, and ground-truth annotation

Our OFDIW dataset consists of two subsets: unconstrained human face subset and pet face subset,
respectively. The images in the human face subset (OFDIW-HF) are acquired from the famous LFW
dataset [6], which is widely used for face recognition-related tasks. While the images in the pet face
subset (OFDIW-PF) are acquired from the Oxford-IIIT Pet dataset [7], which mainly contain faces of
dog and cat. OFDIW totally contains 20623 images, which are sufficient to implement the current deep
learning-based frameworks for the onfocus detection task. Each of OFDIW-HF and OFDIW-PF is further
split into the training set and the test set. The training sets of OFDIW-HF and OFDIW-PF contain
9924 and 5542 images, respectively. The test sets of OFDIW-HF and OFDIW-PF contain 3309 and
1848 images, respectively. Based on the data split, 75% of images in OFDIW are used for training while
25% for testing.

In order to complete the task of onfocus detection, camera can be placed anywhere in the scene to
capture first-view images where the camera is on the normal line of the image plane that passes the
image center. In other words, the camera is located anywhere on the subject’s face, so the subject
can be located anywhere in our task (see examples in Figure 3). Notice that the investigated problem
mainly deals with one subject scenario, including one-to-one or one-to-multiple communications like staff
interview, president speech, prisoner interrogation, etc. Thus, in our dataset, there is only one subject
appearing in the image. During the annotation, we do not use the physical location to determine whether
the object is onfocus or not. Instead, we asked the annotator to use a subjective way to feel whether the
subject was looking at them. For each image, there are three human annotators to label whether the
individual (either the human or the pet) in the image focuses on the camera or not and obtain the final
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Figure 3 (Color online) Illustrate the location of the subject.

Neutral
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Figure 4 (Color online) Diversity of the collected OFDIW dataset. Please zoom in for details.

annotation by processing the majority voting on the three human annotators. The annotation processes
are performed independently on different human annotators and different images.

3.2 Diversity and difficulty

To reveal the diversity of the OFDIW dataset, we also conduct statistics from different aspects. Specif-
ically, for OFDIW-HF, we conduct statistics on different age levels of the individuals presented in the
images, the complexity levels of the image scenes, the occlusion of the human faces, the emotion distri-
bution of the individuals, the gender distribution of the individuals, and the face orientation distribution
of the individual. For OFDIW-PF, we conduct statistics on the distance distribution between the face
of the pet to the camera, the face directions of the pets, and the breed distributions of cat and dog,
respectively.

From the statistics results shown in Figure 4, we can observe that OFDIW-HF exhibits a natural long-
tailed distribution on emotion, age, and face orientation. In terms of emotion, most of the individuals
present happy and neutral and there are also small groups of individuals who present angry, sad, surprise,
etc. With respect to age, most of the individuals are middle-aged and young and there are also small
groups of individuals who are kids and teenagers. In terms of face orientation, most of the individuals
face left, right, or middle, while a few individuals face up and down. Among these images, most of the
individuals (about 85%) are white while the rests are black and yellow. In addition, face occlusion occurs
in more than 90% images. In OFDIW-PF, about 33% are cat images while the rests are dog images. It
contains 25 dog breeds and 12 cat breeds in total, which are uniformly distributed. Among these images,
most of the individuals (about 85%) are close to or have the medium distance to the camera, while a
few individuals are far from the camera. The face orientation distribution of the pets has the similar
long-tailed property as that of the humans.
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Figure 5 (Color online) Framework of the ECIIN for onfocus detection. The purple blocks indicate the primary capsule layers

while the pink blocks indicate the conv-capsule layers. Blue arrows indicate the supervision information. The inputs of the two

network streams are with the spatial size of 224 × 224. The whole network is trained in an end-to-end fashion.

4 Eye-context interaction inferring network

Given each input image, the proposed ECIIN model (see Figure 5) detects onfocus phenomenon by
automatically mining the eye regions from the image and then modeling the interaction between the eye
region and the context region. Different from the previous eye contact detection studies [10,25,26], ECIIN
does not require face detection, facial landmarks tracking, or face pose estimation results to make the
final decision. Instead, we introduce several carefully designed network modules into ECIIN to learn to
explore such information cues implicitly by casting the whole learning problem as an image categorization
task.

4.1 Network design

ECIIN first enables two network streams to separately extract information from the context region and
the eye region, and then these two streams are fused into one stream to explore the eye-context interaction.
For each of the eye region stream and the context region stream, we use two network blocks to extract
useful information, i.e., the CNN block and the CAP block. Based on our intuition, the CNN block is first
used to extract high-dimensional region feature to replace the original RGB pixel feature. CAP block
is used to explore the spatial-hierarchical information upon the regions to obtain the final prediction.
In the CNN block, conventional convolution layers are adopted to extract feature maps for the input
image region. Here we follow the widely-used VGG network architecture [27] to implement our CNN
block by using its conv1–conv5 layers. Then, considering that capsule network is good at exploring the
part-whole relation, we formulate the eye-context relation (a critical issue for onfocus detection) as an
abstract part-whole relation in our model, where a CAP block is used to construct primary capsules
based on the features extracted by the CNN block and then conduct the conv-capsule mapping to model
the part-whole relationship within the input image region (either the context region or the eye region).

4.2 CAP modeling

Given feature maps F ∈ R
(W×H×512) obtained from the CNN block, we construct the 4×4 pose matrices

of the primary capsules by conducting np 1 × 1 convolutions on F and the 1-dimensional activations of
the primary capsules by applying the sigmoid function on F . This constructs W × H ×

np

4×4 primary

capsules3) where each of them has a 4 × 4 pose matrix and a 1-dimensional activation. Then, in each of
the convolutional capsule layers, we set the kernel size as k and the new capsule type as nt, indicating that
there will be nt capsules in each location of the next layer and each of these capsules will be obtained
by aggregating capsules from the current layer of its k × k surrounding regions. The aggregation is
performed by a matrix transformation process and a dynamic routing process. Let {Mi} denote the
pose matrices of the current capsule layer, while let {Vij} denote the vote matrices of the next capsule
layer. The matrix transformation process is performed by learning the transformation matrices {Wij}
such as Vij = MiWij . The dynamic routing process is performed by the EM-based routing-by-agreement

3) Here we can interpret it as
np

4×4 types of capsules while each type contains W × H entities at the corresponding positions.
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Figure 6 (Color online) Capsule convolution operation between two capsule convolutional layer, where {Wij} and {Vij} indicate

the transformation matrices and the vote matrices, respectively. {Mi} and {Mj} indicate the capsules from the current layer and

the next layer, respectively. The blue channel in the capsules indicates the activation while the gray channels indicate the pose

matrix.

strategy [8] to obtain the capsules which consist of both the pose matrices {Mj} and the activations {aj}
in the next layer. More specifically, for each dimension of the vectorized pose matrix Mj, we formulate it
as the expectation of a Gaussian distribution on the corresponding dimension of {Vij}. Let p

h
i|j (h is the

dimension index of the vectorized pose matrix) denote the probability of {vhij} belonging to the Gaussian
distribution of the j-th capsule, and we calculate the activation of the j-th capsule using the minimum
description length principle [8]:

aj = logistic

(

λ

(

βa − βu

∑

i

rij −
∑

h

costhj

))

, costhj = −
∑

i

rij ln p
h
i|j , (1)

where βa and βu are two learnable parameters in the capsule routing process, costhj indicates the cost for
using the capsules in the current layer to active the j-th capsule in the next layer. rij is the weight for
assigning the i-th capsule in the current layer to the j-th capsule in the next layer, which is initialized
uniformly and then gradually updated in the routing process. λ is an inverse temperature parameter
which increases at each iteration. An illustration of the above-mentioned convolutional capsule mapping
operation is shown in Figure 6.

As for the network layers in the eye-context CAP block, similar operations are adopted. Specifically, it
takes the concatenation of the context capsules and eye capsules as the input. Then, it has two routing
layers. The first one implements the conv-capsule mapping to explore the eye-context relationship among
the context capsules and eye capsules. While the second one infers the two classification capsules for final
prediction.

4.3 Learning objective function

To train ECIIN, we follow [8] to adopt the spread loss by maximizing the gap between the activation of
the target class and the activation of the other classes:

L =
∑

p6=t

max(0,m− (at − ap))
2, (2)

where at and ap indicate the activation of the target class and one another class, respectively. m is
the measure of the margin between a certain wrong class and the target class, which is set to 0.2 at
the beginning of the training process and then linearly increases to 0.9 during the subsequent learning
process. To mine the eye region from each input image automatically, we connect the context CNN block
with a global average pooling layer [28] followed by a fully connected layer to predict the two-dimensional
classification vector (see Figure 5). Then, training this network branch through the cross-entropy loss
would enable the network to mine discriminant image regions (through the class activation mapping
technique [28]) which contribute a lot to the classification. From Figure 7 we can observe that the mined
image regions are mainly the eye regions, which conforms to the intuition that the eye region would play
a very important role in the onfocus detection task.
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Figure 7 (Color online) Some examples of the eye regions mined by our approach, where regions with red masks are predicted

with higher probability for being the eye regions.

5 Experiments

The experiments are implemented on both subsets of the built OFDIW dataset. On OFDIW-HF, we
set np = 512, nt = 32, kernel size k as 3. The strides of the context CAP block and eye CAP block
are set to 2 while the stride of the eye-context CAP block is set to 1. On OFDIW-PF, considering that
there are less data for training, we reduce the model parameter to avoid overfitting. Specifically, we add
a max-pooling layer after the context CNN block and eye CNN block, and set np = 256, nt as 8 for the
context CAP block and eye CAP block while 4 for the eye-context CAP block. The stride is set to 1 for
all the three CAP blocks. We adopt the widely used classification accuracy and F-measure in evaluation:

Accuracy =
TP + TN

TP + TN+ FP + FN
, F-measure =

2× Precision× Recall

Precision + Recall
, (3)

where TP, TN, FP, FN indicate the numbers of true positive, true negative, false positive, and false
negative samples, respectively. Precision and Recall are calculated by Precision = TP

TP+FP , and Recall =
TP

TP+FN .

5.1 Comparison to state-of-the-art methods

In this subsection, we first compare our approach with several existing eye contact detection and gaze
estimation methods [2, 11, 15, 25, 29]. When compared with the gaze estimation methods, we simply
modify the prediction head of their models for two-class classification. It is also worth mentioning that
most eye contact detection and gaze estimation methods use the pre-trained facial landmark detector
to locate the eye and other facial components from each input image firstly and then train the learning
models. In contrast, our proposed approach directly performs on the raw input image without requiring
the pre-trained facial landmark detector. The experimental results on two subsets of OFDIW are reported
on the top blocks of Table 1 [2, 11, 15, 25, 27, 29–38]. From the comparison results on OFDIW-HF, it can
be observed that our method obtains 4.21%–10.96% relative performance gains under the measurement
of detection accuracy, and 2.11%–6.26% relative performance gains under the measurement of F-measure.
While such improvements become stronger on OFDIW-PF. Based on our understanding, the reason for
the failure of the eye contact detection and gaze estimation methods on OFDIW-PF might be that these
methods cannot obtain precise locations of the eye and other facial components of pets. This demonstrates
that our approach can work flexibly to detect individual-camera eye contact for both human and pets.

We also compared our approach with the state-of-the-art image categorization methods [27,35–38] and
fine-grained image classification methods [30–34]. The corresponding comparison results are reported in
the middle and bottom blocks of Table 1, respectively. Notice that both our model and the compared
models use the parameters pre-trained on the ImageNet dataset [39]. From the comparison results,
we can observe that directly using these state-of-the-art network architectures cannot obtain better
performance than our proposed ECIIN model. Take the results on OFDIW-HF as an example. When
comparing to the state-of-the-art image categorization networks and fine-grained image classification
networks, our approach obtains 1.26%–4.55% relative performance gains under the detection accuracy.
It worth mentioning that during the comparison of classification models, such improvements are not
marginal according to the current literature, e.g., [40, 41], a new classification model usually exceeds the
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Table 1 Comparison to the state-of-the-art methods, including the eye contact detection methods, gaze estimation methods,

image categorization networks, and fine-grained image classification networks

Method
OFDIW-HF OFDIW-PF

Accuracy F-measure Accuracy F-measure

DEEPEC [11] 0.7939 0.8639 0.5411 0.6323

Gaze-lock detector [25] 0.8129 0.8821 0.5801 0.6450

PiCNN [2] 0.7996 0.8747 0.5584 0.5996

Multimodal CNN [15] 0.7634 0.8476 0.5487 0.6329

CA-Net [29] 0.8117 0.8809 0.6272 0.6518

NTSnet [30] 0.8190 0.8834 0.7030 0.7183

MPN-COV [31] 0.8362 0.8926 0.7192 0.7435

DFL [32] 0.8102 0.8814 0.7495 0.7504

BCNN [33] 0.8320 0.8919 0.7608 0.7600

DCL [34] 0.8214 0.8867 0.7576 0.7679

VGG16 [27] 0.8262 0.8897 0.7516 0.7536

Resnet50 [35] 0.8229 0.8837 0.7446 0.7495

Res2net50 [36] 0.8223 0.8861 0.7505 0.7572

Densenet121 [37] 0.8290 0.8904 0.7608 0.7676

Senet154 [38] 0.8193 0.8832 0.7673 0.7746

Ours 0.8471 0.9007 0.7744 0.7747

Figure 8 (Color online) Some examples to illustrate the failure cases of the proposed approach, where the ground-truth labels

are shown in the red boxes while the prediction results are shown in the blue boxes.

existing models around 1% in accuracy. To our best knowledge, the advantage of our approach upon the
existing image categorization models is that the proposed framework contains a two-stream architecture
to model the eye-context interaction. While compared to the fine-grained classification models, the
advantage of the proposed approach is the capacity to facilitate the part-whole relationship modeling for
onfocus detection.

For model complexity, when compared to the gaze models, the complexity of our model is lower as gaze
models usually need to integrate multiple deep models to accomplish the task. When compared to the
compared classification networks, our model has higher complexity owing to the two-stream architecture
and the capsule routing layers.

To analyze the failure cases of the proposed approach, we show examples in Figure 8. As can be seen,
the failure cases mainly occur when one or two eyeballs of the subject (either human or pet) are hard to
observe from the input image. Under this circumstance, the extracted feature cannot provide sufficient
information to make precise predictions.

5.2 Ablation study

In the ablation study, we first study the key components of the proposed ECIIN model. Specifically, we
compare the proposed approach with three baseline models. The first one is the 2S CNN model, which
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Table 2 Ablation study of our ECIIN model on OFDIW-HFa)

Method Accuracy F-measure

2S CNN 0.8244 0.8890

2S CNN + Context CAP 0.8302 0.8881

2S CNN + 2S CAP 0.8401 0.8964

2S CNN + 2S CAP + EC CAP 0.8471 0.9007

a) 2S is short for two-stream; EC CAP is short for eye-context capsule block.

Table 3 Study on different strategies to generate the input eye regions of the eye CNN block

Strategy Accuracy F-measure

Weighted multiplying strategy (WM) 0.8395 0.8961

Concatenation strategy (CO) 0.8419 0.8970

Binary multiplying strategy (BM) 0.8465 0.8990

Cropping strategy (CR) 0.8471 0.9007

uses the two-stream CNN architecture with the decision-level fusion. In other words, the final decision
of this baseline is obtained by averaging the predictions of the two CNN streams rather than applying a
fusion block to integrate the features learned from the two CNN streams to generate the final prediction.
The 2S CNN + Context CAP baseline adds the context CAP on top of 2S CNN, while the 2S CNN
+ 2S CAP baseline adds the eye CAP on top of 2S CNN + Context CAP. Similar to 2S CNN, these
two baselines also adopt the decision-level fusion strategy to obtain the final prediction. Finally, our
approach is implemented by further adding the eye-context CAP on top of 2S CNN + 2S CAP. From the
experimental results reported in Table 2, we can observe that using the capsule blocks cannot only help
better explore the information within the context image regions or the eye regions but also improve the
final prediction by exploring the interaction between the eye and context regions.

In addition, we also study several strategies to generate the input eye regions of the eye CNN block.
The studied strategies include the weighted multiplying strategy (WM), the concatenation strategy (CO),
the binary multiplying strategy (BM), and the cropping strategy (CR). Specifically, the WM strategy
directly implements the element-wise product between the original image and the class activation map
(CAM) obtained from the context CNN to generate eye CNN’s input. The CO strategy concatenates
the original image and the class activation map as the input of the eye CNN. The BM strategy first
binarizes the obtained CAM with the threshold of 0.8 and then implements the element-wise product
between the original image and the binary CAM to generate eye CNN’s input. The CR strategy uses the
same threshold to binarize the CAM and then crops the rectangle image region from the original image
according to the highlight locations on CAM. The experimental results reported in Table 3 demonstrate
that the CR strategy works better than other strategies in terms of both accuracy and F-measure. To
our knowledge, this might be due to the CR strategy can make the eye CNN and eye CAP better focus
on the fine-level features around the eye regions.

6 Conclusion

This work studies a new task called onfocus detection, which aims at identifying whether the focus of the
individual (human or animal) captured by a camera in unconstrained imaging conditions is on the camera
or not. To solve this problem, we first build a large-scale onfocus detection dataset, named OFDIW, to
facilitate the study in this field. The OFDIW dataset contains individuals with diverse emotions, ages,
facial characteristics, and rich interactions with surrounding objects and background scenes. It consists of
two subsets and totally 20623 unconstrained images. Then, we reveal the main challenges in the onfocus
detection task and establish a novel end-to-end deep model, called ECIIN, to explore the informative
eye-context interaction cues for onfocus detection. Comprehensive experiments on the OFDIW dataset
demonstrate that the proposed model can obtain superior performance when compared to the state-of-the-
art gaze estimation, eye contact detection, image categorization and fine-grained classification methods.
Besides, comprehensive ablation studies are also conducted to verify the effectiveness of each component
considered in our approach.
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