Skip to main content
Log in

Multi-channel quantum parameter estimation

  • Research Paper
  • Special Focus on Quantum Information
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The aim of quantum metrology is to exploit quantum effects to improve the precision of parameter estimation beyond its classical limit. In this paper, we investigate the quantum parameter estimation problem with multiple channels. It is related but not limited to the following two important and practical quantum metrology problems: (i) Quantum enhanced metrology with control, whose aim is to improve the precision of quantum sensing by utilizing feedback or open-loop control; (ii) Practical quantum metrology where the underlying evolution of quantum probes may change from a unitary dynamics to an open system dynamics, owing to the inevitable decoherence during the quantum sensing operation. For various kinds of quantum multiple channels, the corresponding quantum channel Fisher information is derived. To demonstrate the results, some illustrative examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Giovannetti V, Lloyd S, Maccone L. Quantum metrology. Phys Rev Lett, 2006, 96: 010401

    Article  MathSciNet  Google Scholar 

  2. Xiang G Y, Higgins B L, Berry D W, et al. Entanglement-enhanced measurement of a completely unknown optical phase. Nat Photon, 2011, 5: 43–47

    Article  Google Scholar 

  3. Napolitano M, Koschorreck M, Dubost B, et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature, 2011, 471: 486–489

    Article  Google Scholar 

  4. Escher B M, de Matos Filho R L, Davidovich L. Quantum metrology for noisy systems. Braz J Phys, 2011, 41: 229–247

    Article  Google Scholar 

  5. Demkowicz-Dobrzański R, Kolodyński J, Guţă M. The elusive Heisenberg limit in quantum-enhanced metrology. Nat Commun, 2012, 3: 1063

    Article  Google Scholar 

  6. Kolodyński J, Demkowicz-Dobrzański R. Efficient tools for quantum metrology with uncorrelated noise. New J Phys, 2013, 15: 073043

    Article  MATH  Google Scholar 

  7. Escher B M, de Matos Filho R L, Davidovich L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat Phys, 2011, 7: 406–411

    Article  Google Scholar 

  8. Alipour S, Mehboudi M, Rezakhani A T. Quantum metrology in open systems: dissipative Cramér-Rao bound. Phys Rev Lett, 2014, 112: 120405

    Article  Google Scholar 

  9. Liu Z P, Zhang J, Özdemir K, et al. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys Rev Lett, 2016, 117: 110802

    Article  Google Scholar 

  10. Hou Z B, Zhu H J, Xiang G Y, et al. Achieving quantum precision limit in adaptive qubit state tomography. npj Quantum Inf, 2016, 2: 16001

    Article  Google Scholar 

  11. Zhang J, Peng B, (Özdemir K, et al. A phonon laser operating at an exceptional point. Nat Photon, 2018, 12: 479–484

    Article  Google Scholar 

  12. Wang Y L, Dong D Y, Qi B, et al. A quantum hamiltonian identification algorithm: computational complexity and error analysis. IEEE Trans Autom Control, 2018, 63: 1388–1403

    Article  MathSciNet  MATH  Google Scholar 

  13. Yokoyama S, Pozza N D, Serikawa T, et al. Characterization of entangling properties of quantum measurement via two-mode quantum detector tomography using coherent state probes. Opt Express, 2019, 27: 34416–34432

    Article  Google Scholar 

  14. Wang Y L, Yin Q, Dong D Y, et al. Quantum gate identification: error analysis, numerical results and optical experiment. Automatica, 2019, 101: 269–279

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou Z, Wang R J, Tang J F, et al. Control-enhanced sequential scheme for general quantum parameter estimation at the Heisenberg limit. Phys Rev Lett, 2019, 123: 040501

    Article  Google Scholar 

  16. Song Q J, Huang Z Y. Identification of errors-in-variables systems with general nonlinear output observations and with ARMA observation noises. J Syst Sci Complex, 2020, 33: 1–14

    Article  MathSciNet  MATH  Google Scholar 

  17. Hou Z B, Zhang Z, Xiang G Y, et al. Minimal tradeoff and ultimate precision limit of multiparameter quantum magnetometry under the parallel scheme. Phys Rev Lett, 2020, 125: 020501

    Article  Google Scholar 

  18. Hou Z B, Tang J F, Ferrie C, et al. Experimental realization of self-guided quantum process tomography. Phys Rev A, 2020, 101: 022317

    Article  Google Scholar 

  19. Wang Y L, Dong D Y, Sone A, et al. Quantum Hamiltonian identifiability via a similarity transformation approach and beyond. IEEE Trans Autom Control, 2020, 65: 4632–4647

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu Q, Wang Y L, Dong D Y, et al. On the capability of a class of quantum sensor. 2020. ArXiv:2003.08679

  21. Liu L Q, Yuan H D. Achieving higher precision in quantum parameter estimation with feedback controls. Phys Rev A, 2020, 102: 012208

    Article  MathSciNet  Google Scholar 

  22. Roy S M, Braunstein S L. Exponentially enhanced quantum metrology. Phys Rev Lett, 2008, 100: 220501

    Article  Google Scholar 

  23. Anisimov P M, Raterman G M, Chiruvelli A, et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys Rev Lett, 2010, 104: 103602

    Article  Google Scholar 

  24. Chaves R, Brask J B, Markiewicz M, et al. Noisy metrology beyond the standard quantum limit. Phys Rev Lett, 2013, 111: 120401

    Article  Google Scholar 

  25. Demkowicz-Dobrzański R, Maccone L. Using entanglement against noise in quantum metrology. Phys Rev Lett, 2014, 113: 250801

    Article  Google Scholar 

  26. Yuan H. Sequential feedback scheme outperforms the parallel scheme for Hamiltonian parameter estimation. Phys Rev Lett, 2016, 117: 160801

    Article  Google Scholar 

  27. Giovannetti V. Quantum-enhanced measurements: beating the standard quantum limit. Science, 2004, 306: 1330–1336

    Article  Google Scholar 

  28. Choi S, Sundaram B. Bose-einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit. Phys Rev A, 2008, 77: 053613

    Article  Google Scholar 

  29. Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photon, 2011, 5: 222–229

    Article  Google Scholar 

  30. Yuan H D, Fung C H F. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation. Phys Rev Lett, 2015, 115: 110401

    Article  Google Scholar 

  31. Liu J, Yuan H D. Quantum parameter estimation with optimal control. Phys Rev A, 2017, 96: 012117

    Article  Google Scholar 

  32. Pang S, Jordan A N. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nat Commun, 2017, 8: 14695

    Article  Google Scholar 

  33. Matsuzaki Y, Benjamin S, Nakayama S, et al. Quantum metrology beyond the classical limit under the effect of dephasing. Phys Rev Lett, 2018, 120: 140501

    Article  Google Scholar 

  34. Wang K K, Wang X P, Zhan X, et al. Entanglement-enhanced quantum metrology in a noisy environment. Phys Rev A, 2018, 97: 042112

    Article  Google Scholar 

  35. Chen Y, Yuan H D. Cooperation between coherent controls and noises in quantum metrology. 2018. ArXiv:1801.07563v1

  36. Zhou S S, Zhang M Z, Preskill J, et al. Achieving the Heisenberg limit in quantum metrology using quantum error correction. Nat Commun, 2018, 9: 78

    Article  Google Scholar 

  37. Liu L J, Cheng S M, Qi B, et al. Precision limit of atomic magnetometers in the presence of spin-destruction collisions. J Phys B-At Mol Opt Phys, 2015, 48: 035502

    Article  Google Scholar 

  38. Liu L J, Qi B, Cheng S M, et al. High precision estimation of inertial rotation via the extended Kalman filter. Eur Phys J D, 2015, 69: 261

    Article  Google Scholar 

  39. Wu C Z, Qi B, Chen C L, et al. Robust learning control design for quantum unitary transformations. IEEE Trans Cybern, 2017, 47: 4405–4417

    Article  Google Scholar 

  40. Gong B L, Cui W. Multi-objective optimization in quantum parameter estimation. Sci China-Phys Mech Astron, 2018, 61: 040312

    Article  Google Scholar 

  41. Gong B L, Yang Y, Cui W. Quantum parameter estimation via dispersive measurement in circuit QED. Quantum Inf Process, 2018, 17: 301

    Article  MATH  Google Scholar 

  42. Dong D Y, Xing X, Ma H L, et al. Learning-based quantum robust control: algorithm, applications, and experiments. IEEE Trans Cybern, 2020, 50: 3581–3593

    Article  Google Scholar 

  43. Liu J, Yuan H D, Lu X M, et al. Quantum Fisher information matrix and multiparameter estimation. 2019. ArXiv:1907.08037

  44. Holevo A. Probabilistic and Statistical Aspects of Quantum Theory. Amsterdam: Edizioni della Normale, 1982

    MATH  Google Scholar 

  45. Braunstein S L, Caves C M, Milburn G J. Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann Phys, 1996, 247: 135–173

    Article  MathSciNet  MATH  Google Scholar 

  46. Braunstein S L, Caves C M. Statistical distance and the geometry of quantum states. Phys Rev Lett, 1994, 72: 3439–3443

    Article  MathSciNet  MATH  Google Scholar 

  47. Yuan H D, Fung C H F. Quantum parameter estimation with general dynamics. npj Quantum Inf, 2017, 3: 14

    Article  Google Scholar 

  48. Pang S S, Brun T A. Quantum metrology for a general Hamiltonian parameter. Phys Rev A, 2014, 90: 022117

    Article  Google Scholar 

  49. Anis A, Lvovsky A I. Maximum-likelihood coherent-state quantum process tomography. New J Phys, 2012, 14: 105021

    Article  MathSciNet  MATH  Google Scholar 

  50. Qi B, Hou Z B, Li L, et al. Quantum state tomography via linear regression estimation. Sci Rep, 2013, 3: 3496

    Article  Google Scholar 

  51. Qi B, Hou Z B, Wang Y L, et al. Adaptive quantum state tomography via linear regression estimation: Theory and two-qubit experiment. npj Quantum Inf, 2017, 3: 19

    Article  Google Scholar 

  52. Yuan H D, Fung C H F. Fidelity and Fisher information on quantum channels. New J Phys, 2017, 19: 113039

    Article  MathSciNet  MATH  Google Scholar 

  53. Wilcox R M. Exponential operators and parameter differentiation in quantum physics. J Math Phys, 1967, 8: 962–982

    Article  MathSciNet  MATH  Google Scholar 

  54. Scully M O, Zubairy M S. Quantum Optics. Cambridge: Cambridge University Press, 1997

    Book  Google Scholar 

  55. Zhang X D. Matrix Analysis and Applications. Cambridge: Cambridge University Press, 2017

    Book  MATH  Google Scholar 

  56. Liu Y, Cui J X. Realization of Kraus operators and POVM measurements using a duality quantum computer. Chin Sci Bull, 2014, 59: 2298–2301

    Article  Google Scholar 

  57. Meng X G, Wang J S, Gao H C. Kraus operator-sum solution to the master equation describing the single-mode cavity driven by an oscillating external field in the heat reservoir. Int J Theor Phys, 2016, 55: 3630–3636

    Article  MathSciNet  MATH  Google Scholar 

  58. Ruan L Z, Dai W H, Win M Z. Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels. Phys Rev A, 2018, 97: 052332

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61773370, 11688101, 61833010, 61828303), and Daoyi DONG also acknowledged the partial support by Australian Research Councils Discovery Projects Funding Scheme (Grant No. DP190101566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, L., Qi, B., Wang, Y. et al. Multi-channel quantum parameter estimation. Sci. China Inf. Sci. 65, 200505 (2022). https://doi.org/10.1007/s11432-020-3196-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3196-x

Keywords

Navigation