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Abstract The full memristive network hardware features high density and excellent scalability. However,

recent researches on the full memristive network have been limited to a single-layer network, due to the lack

of effective and flexible communication between neurons. In this design, we demonstrate a neuromorphic

core based on Ag/SiO2/Au threshold switching memristor, which has built-in asynchronous AER circuits

to provide flexible communication between neurons. Since temporally sparse spikes are the medium of

communication between neurons, the AER circuits are designed to transmit spikes serially which have been

encoded by neurons’ address before transmission. With the asynchronous circuits design, the AER circuits

will detect neurons’ output in real-time. To benchmark the neuromorphic core, a multi-core behavior level

simulator is built to simulate an LSM network that performs 100% accuracy on the FSDD speech corpus.

The simulation results show that the neuromorphic core obtains 35 times higher performance than the CPU

and 111 times higher energy efficiency than the GPU.
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1 Introduction

Spiking neural networks (SNNs) draw inspiration from the brain to improve the capabilities and en-
ergy efficiency of machine learning. Some researchers adopt digital or analog circuits based on CMOS
(complementary metal-oxide-semiconductor) technology to realize neurons and using synapses based on
SRAM(static random-access memory) [1–4]. With network-on-chip, multi-cores are integrated into a sin-
gle chip to handle a huge network. However, as the area of CMOS neuron and SRAM synapse is difficult
to be reduced, the total number of physical neurons in a chip is hard to be increased. To improve the
density and energy-efficiency of synapses, the memristor is used to design neural networks, such as face
classification network [5], reinforcement learning network [6], and long short-term memory network [7],
in which the multi-level conductance of memristor is used as the weight of the synapse, and the neurons
are designed with ADCs(analog-digital converts) which consume a lot of areas. Furthermore, the Leaky-
Integration-and-Fire (LIF) neuron based on the threshold switching memristor(TSM) proposed in [8] is
used in the fully memristive network to reduce power consumption and area [9, 10]. As we know, the
TSM based neuron has a simple structure and features high density and excellent scalability. However,
because the TSM neuron is composed of passive devices, its driving ability is too limited to drive the
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next neuron. This problem limits the flexibility of interconnection between neurons, so it is impossible to
build a multi-layer fully memristive network. To implement a multi-layer network, a good solution is to
digitally shape spikes and design neuron interconnection circuits in the digital domain. The address event
representation (AER) circuits are adopted to transmit spikes from an array of neurons in one chip to
other chips [11], which are also widely used in spike-based-image sensors [12]. The AER circuits convert
parallel and discrete spikes to a serial address sequence and transmit the addresses to other chips. The
connection of neurons can be flexibly configured by address mapping, and the scalability of the network
is greatly improved. Moreover, the asynchronous AER circuits are clock-free circuits that bring two
advantages: no clock power consumption and no quantization error in time.

In this work, we design a neuromorphic core with 16 LIF neurons based on Ag/SiO2/Au TSM and
asynchronous AER circuits. The neuromorphic core is composed of TSM neuron circuits, voltage level
shifter circuits, and an FPGA (field-programmable gate array). In particular, we propose the asyn-
chronous AER circuits, in which only an OR gate and a D-flip-flop are used to receive spikes accurately,
which greatly reduces the demand of the receiving circuits for the neuron’s driving ability.

2 TSM and Neuron

(a) (b) (c) (d)

Figure 1 (a) The scanning electron microscope image of a TSM device.; (b) IV characteristics of TSM and the corresponding

switching of the resistance. According to the I-V curve, TSM will turn on when voltage larger than 0.31V and turn off when

voltage lower than 0.13V. (c) The schematic of TSM neuron Circuits, consisting of a charging loop and a discharging loop. (d) The

membrane voltage and spike of a neuron when a 1KHz spike train is applied to the neuron.

The threshold switch memristive devices in this work consist of three layers: an Au/Ti (40nm/10nm)
bottom electrode, a SiO2:Ag(10nm) as function layers, an Ag(40nm) top electrodes. The area of the
device is 4μm × 4μm, as shown in Figure 1(a). The detailed fabrication process of the devices can be
found in our previous work [8]. The electrical characteristics of a single TSM are tested by Agilent
B1500A. Figure 1(b) is the I-V curve and I-R cure of the TSM, from which we can find that, when the
voltage between top and bottom electrodes of TSM is beyond the threshold voltage (about 310mV),
the TSM will switch from high resistance state (HRS) to low resistance state(LRS); when the voltage is
lower than the threshold voltage (about 130mV), the TSM will switch from LRS to HRS, as shown in
Figure 1(b).

The neuron is composed of one input resistor Rs, one capacitor C and one load resistor Rd, as shown
in Figure 1(c). When a series of spikes (1KHz, 2V) are fed into the neuron through Rs, the capacitor will
accumulate the charges and lift the voltage potential. During charging, the TSM remains in the HRS.
After the voltage is beyond the threshold voltage of TSM, the TSM switches from HRS to LRS, and
the capacitor will discharge through Rd rapidly. A spike will be generated by the neuron, as shown in
Figure 1(d).

Because the output spike voltage of a TSM neuron is a short pulse, which is not able to directly drive
the next layer of the network. In this design, we first convert the spike voltage to a digital signal. The
network cascading is completed in the digital domain, an AER circuits is employed to convert multi-
channel spike signals into serial signals, as shown in Figure 2(a). In this design, 16 neurons based on TSM
are bounded to a printed circuits board(PCB), and the 16× 16 1bit synapses are designed with the on-
chip memory of FPGA, as shown in Figure 2(b). The AER circuits are implemented in FPGA. The input
spikes are first generated by control circuits in FPGA, analog switches, and a channel of 12bit DAC with
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eight channels. An oscilloscope (MSO9404A) collects all the input spikes, output spikes, and membrane
potentials. The signals in the AER circuits such as address and handshake signals are collected by JTAG
circuits in FPGA because of the limited channels of the oscilloscope. The PCB is shown in Figure 2(c).

(a) (b)

(c)

Figure 2 (a) The working principle of AER. The parallel and discrete spikes are converted to serial address sequences and then

transmitted to the next layer. When multi neurons are activated at the same time, the time error can’t be avoided. (b) The

schematic of TSM based neuromorphic core with 16 neurons, 16x16 1bit synapses, and AER circuits. (c) This is the PCB of the

neuromorphic core, the TSMs are bounded to a sub PCB, and the FPGA is on the back.

3 AER Circuits and Neuromorphic Core

The AER circuits convert multiple spikes into serial signals and transmit them to the next layer. However,
when multi neurons are activated at the same time, the time errors in the process of spike transmission
cannot be avoided. To solve the problem, in this design, an adaptive priority arbitration scheme is put
forward to distribute the time errors evenly among different neurons in Figure 2(a). As a result, the
adaptive priority arbitration will reduce the influence to the neural networks. Besides, the asynchronous
circuits design method is employed which brings two advantages: no clock-power computation and no
quantization error in time.

Figure 3(a) illustrates the two-port AER circuits, that consist of input port circuits, arbitration circuits,
and handshake circuits. The input port circuits are composed of the XOR gate, AND gate, and NAND
gate. A rising edge of either of the two signals (spikeA, spikeB) will trigger the Fill signal, which will
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(a) (b)

Figure 3 (a) The asynchronous two-port AER circuits schematic. (b) The timing information of the two-port AER circuits.

then trigger the handshake circuits and arbitration circuits. DrainA and DrainB are the ACK signals
of SpikeA and SpikeB respectively. According to the arbitration result, DrainA or DrainB is pulled up
to respond to the input port. If previous circuits do not need the ACK, the gray circuits in Figure 3(a)
can be removed. The arbitration circuits generate an arbitration priority, which is composed of three
D-Flip-Flops, two AND gates, and one OR gate. Once Fill is triggered, the status of SpikeA and spikeB
will be latched immediately until the next Fill signal arrives, and the priority will be updated. The
arbitration logic is Sel = (A||A&&T )&&B, in which Sel is the result and Token is the priority. The
adaptive priority is adopted in the arbitration process to distribute the time errors evenly among different
neurons. In this work, Click-based link-joint handshake circuits are adopted, which handle multi-port
arbitration results. Linke-Joint is an event-driven 4-phase handshake protocol [13], in which Fill/Empty
and Drain/Full are backward and forward handshake signals respectively. When empty is 1’b1, the Link
circuits will receive Fill. When Fill is 1’b1, empty is pulled down, and the previous circuits are blocked to
ensure that the information will not be lost. At the same time, Req is reversed to make Full signal pulled
up. After Full being pulled up, the subsequent circuits can receive the arbitration result (Sel signal).
The timing constraints are adopted to ensure that the Sel signal is stable before the Full is high. The
Drain is generated by subsequent circuits to reset Link to idle status when the Sel has been read. The
waveforms in Figure 3(b) show the timing of the connection to form multi-port AER circuits.

Figure 4 The Tree-AER circuits.

Multiple two-port AER circuits can be connected to form multi-port AER circuits. In this work, we
design a 4-stage Tree-AER with 16 input ports and 15 two-port AER circuits, as shown in Figure 4.
The output of each neuron is connected to the input port (SpikeA or SpikeB) of the first-stage AER
circuits. The Full signals of the first-stage of AER circuits are connected to the SpikeA or SpikeB signals
of the second-stage AER circuits. The Drain signals of the first-stage of AER circuits are connected to
the DrainA or DrainB signals of the second-stage AER circuits. The connection of the AER circuits of
other stages is the same as that of the first-stage AER circuits. The Sel signals of the selected AER
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circuits at each stage constitute a 4-bit ADDR signal, which is the address of the activated neuron and
is transmitted to next the layer of the network.

Furthermore, we design refractory circuits to achieve controllable refractory period time for neurons
and protect the TSM device. According to the model of LIF neurons, when a neuron is activated, it
enters the refractory period. In the refractory period, the input spikes to the neuron will not affect the
membrane potential, and the neuron will not generate spikes in the refractory period. Another function
of refractory circuits is that it protects the TSM device to be breakdown from continuous input when the
TSM switches to LRS. When the TSM switches to LRS, the continuous input spikes will cause a large
current, which may breakdown the TSM. The refractory circuits are designed as shown in Figure 5(a),
in which a Mask signal is used to shield the input spike to the neuron, when the neuron is activated.
Figure 5(b) is the finite-state-machine (FSM) of the refractory circuits. The key signal is generated by
the reset button in the PCB. When the button is pressed, the system will be activated. If the neuron is
activated (getspike is 1’b1), the FSM switch to ”CNT” state and the Mask signal is 1’b1. After a pre-set
period, the system switches the ”start” state. This period is the refractory time of neurons, which is
defined by users.

(a) (b)

Figure 5 (a) The refractory circuits. (b) The FSM of refractory circuits.

4 Results and Discussion

With the neuromorphic core, two experiments are carried out: each neuron spikes at different times,
and all neurons spike at the same time. When AER circuits serially transmit a spike of a neuron, it
is necessary to ensure that the time information carried by the spike is not lost [14, 15]. We adopt an
oscilloscope to accurately measure the time when neurons generate spikes and the time taken by AER
for transmitting spikes. The measurement results of neuron1 and neuron6 in the neuromorphic core
are shown in Figure 6, in which the time when neuron1 generated a spike was 1.815μ s earlier than the
time when neuron6 generated a spike (Δt1 = 1.815μs). When the handshake signal of AER (Full) is
high, it indicates that the AER circuits have finished encoding the spike. The neurons in the post layer
obtain Addr and restore spikes according to the Addr when Full is high. The rising edge of the Full
signal means that the spike transmission is finished. In Figure 6, the time interval between neuron1 and
neuron6 reaching the next layer is Δt2(= 1.815μs) equal to Δt1, which proves that the timing information
is not lost.

When multi neurons are activated at the same time, spikes congestion will occur. As a result, time
errors will appear when blocked spikes are transmitted. To detect the errors in an extreme case, we
connect one neuron to all 16 channels of Tree-AER to simulate the situation when 16 neurons generate
spikes at the same time. From the waveform shown in Figure 7, we can find that the delay of the first
transmitted spike (neuron0 ) is 85 ns and the delay of the last transmitted neuron (neuronF ) is 905 ns.
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Figure 6 The spike waveforms of neuron1 and neuron6. The red line and orange line are spikes of neuron1 and neuron6. The

blue line and cerulean line are digital spikes. Full is the spike that is transmitted to the next layer, and Addr is the address of

spikes.

Figure 7 The spike waveform of neurons, when 16 neurons generate spikes at the same time.

Therefore, the last transmitted spike causes the greatest time error of 825 ns. However, the probability
of time errors is very small because the TSM neuron generates spikes at a speed of several thousands
of spikes per second [8], but the speed of AER circuits transmitting spikes is 11.76 Mspike/s. Another
method to deal with spike congestion is adoptive priority arbitration. In this design, every two-port AER
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circuits have a Token signal. When the Token signal is 1’b0, SpikeA channel has the highest priority.
When the spikes reach the SpikeA channel and SpikeB channel at the same time, the spike of the SpikeA
channel is transmitted to the next stage first. When the Token signal is 1’b1, SpikeB channel has the
highest priority. When AER circuits finished transmission of a spike, the Token signal will be updated
to !Sel. This mechanism makes the time errors to be distributed evenly among different neurons.

To benchmark the neuromorphic core, we design a behavior level simulator of the neuromorphic system
with 16 neuromorphic cores, as shown in Figure 8. In the system, the cores are connected by the AER
circuits and routers. To accurately simulate the system behavior and performance, the event-based
driven mechanism and timing synchronization mechanism are adopted by the simulator. With these two
mechanisms, the transmission delay and time errors of the AER circuits will be accurately simulated.
A sound recognition liquid state machine (LSM) is mapped on the system. The sound signal is first
transformed to spike trans by Lyon passive ear model and Ben coding algorithm (BSA) filters [16]. The
output spikes of every neuron in LSM are collected and classified by a linear layer. The LSM consists
of 16 layers. The neurons in each layer are arranged in 7 rows and 7 columns. The connection between
each neuron is random.

Such a neuromorphic system performs 100% accuracy on the Free Spoken Digital Dataset (FSDD)
speech corpus. The running time of the neuromorphic system is 5.6ms which is 1/35 of the running
time (195.2 ms) of CPU (i7 9700). We also map the LSM in NVIDIA V100. In order to make the most
effective use of GPU, we set batchsize to 128. The result shows that the average time to run each case is
5.3 ms and the power consumption is 10.34 mW. The result of our neuromorphic simulator shows that
the average time to run each case is 5.6 ms, which is very close to GPU. And the power consumption
is 93uJ. The simulation shows that the neuromorphic core achieves 1/1 performance and 111/1 energy
efficiency to GPU.

Figure 8 the LSM network for digital speech recognition. The speech signal is first transformed to spike trains by Lyno and BSA

filters. The LSM consists of 16 layers with 49 neurons, each layer is mapped in a neuromorphic core. The neurons are connected

by random 1bit synapses. The spikes of LSM are collected and classified by a linear layer.

5 Conclusion

In this paper, a neuromorphic core with the AER circuits is built for the SNN chip. The TSM neuron
successfully achieves the LIF neuron model and the AER circuits successfully achieve serial transmission of
multi neurons’ spikes without loss of time information when there is no spike congestion. The simulation
results show that the neuromorphic core obtains 35 times higher performance than the CPU, and 111
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times higher energy efficiency than GPU. It is ready for the SNN chip applications in future work.
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